TPAM: a simulation-based model for quantitatively analyzing parameter adaptation methods

While a large number of adaptive Differential Evolution (DE) algorithms have been proposed, their Parameter Adaptation Methods (PAMs) are not well understood. We propose a Target function-based PAM simulation (TPAM) framework for evaluating the tracking performance of PAMs. The proposed TPAM simulation framework measures the ability of PAMs to track predefined target parameters, thus enabling quantitative analysis of the adaptive behavior of PAMs. We evaluate the tracking performance of PAMs of widely used five adaptive DEs (jDE, EPSDE, JADE, MDE, and SHADE) on the proposed TPAM, and show that TPAM can provide important insights on PAMs, e.g., why the PAM of SHADE performs better than that of JADE, and under what conditions the PAM of EPSDE fails at parameter adaptation.

[1]  Ponnuthurai N. Suganthan,et al.  An Adaptive Differential Evolution Algorithm With Novel Mutation and Crossover Strategies for Global Numerical Optimization , 2012, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[2]  Janez Brest,et al.  Self-adaptive control parameters' randomization frequency and propagations in differential evolution , 2015, Swarm Evol. Comput..

[3]  Xin Yao,et al.  Fast Evolution Strategies , 1997, Evolutionary Programming.

[4]  Janez Brest,et al.  Self-Adapting Control Parameters in Differential Evolution: A Comparative Study on Numerical Benchmark Problems , 2006, IEEE Transactions on Evolutionary Computation.

[5]  R. Storn,et al.  Differential Evolution: A Practical Approach to Global Optimization (Natural Computing Series) , 2005 .

[6]  Zbigniew Michalewicz,et al.  Parameter Control in Evolutionary Algorithms , 2007, Parameter Setting in Evolutionary Algorithms.

[7]  Alex S. Fukunaga,et al.  Improving the search performance of SHADE using linear population size reduction , 2014, 2014 IEEE Congress on Evolutionary Computation (CEC).

[8]  Arthur C. Sanderson,et al.  JADE: Adaptive Differential Evolution With Optional External Archive , 2009, IEEE Transactions on Evolutionary Computation.

[9]  Rainer Storn,et al.  Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces , 1997, J. Glob. Optim..

[10]  Janez Brest,et al.  An Analysis of the Control Parameters’ Adaptation in DE , 2008 .

[11]  Mikhail Zhabitsky,et al.  Asynchronous differential evolution with adaptive correlation matrix , 2013, GECCO '13.

[12]  Alex S. Fukunaga,et al.  Reevaluating Exponential Crossover in Differential Evolution , 2014, PPSN.

[13]  Michèle Sebag,et al.  Analysis of adaptive operator selection techniques on the royal road and long k-path problems , 2009, GECCO.

[14]  Alex S. Fukunaga,et al.  How Far Are We from an Optimal, Adaptive DE? , 2016, PPSN.

[15]  Anne Auger,et al.  How to Assess Step-Size Adaptation Mechanisms in Randomised Search , 2014, PPSN.

[16]  Christopher R. Stephens,et al.  "Optimal" mutation rates for genetic search , 2006, GECCO.

[17]  Petr Posík,et al.  JADE, an adaptive differential evolution algorithm, benchmarked on the BBOB noiseless testbed , 2012, GECCO '12.

[18]  Anne Auger,et al.  Real-Parameter Black-Box Optimization Benchmarking 2009: Noiseless Functions Definitions , 2009 .

[19]  Alex S. Fukunaga,et al.  Success-history based parameter adaptation for Differential Evolution , 2013, 2013 IEEE Congress on Evolutionary Computation.

[20]  Mark Hoogendoorn,et al.  Parameter Control in Evolutionary Algorithms: Trends and Challenges , 2015, IEEE Transactions on Evolutionary Computation.

[21]  Kiyoshi Tanaka,et al.  Comparison of Parameter Control Mechanisms in Multi-objective Differential Evolution , 2015, LION.

[22]  Ponnuthurai N. Suganthan,et al.  Recent advances in differential evolution - An updated survey , 2016, Swarm Evol. Comput..

[23]  Rainer Laur,et al.  Comparison of Adaptive Approaches for Differential Evolution , 2008, PPSN.

[24]  Carlos A. Coello Coello,et al.  An analysis of the automatic adaptation of the crossover rate in differential evolution , 2014, 2014 IEEE Congress on Evolutionary Computation (CEC).

[25]  Mehmet Fatih Tasgetiren,et al.  Differential evolution algorithm with ensemble of parameters and mutation strategies , 2011, Appl. Soft Comput..