Cell Type-Specific Long-Term Plasticity at Glutamatergic Synapses onto Hippocampal Interneurons Expressing either Parvalbumin or CB1 Cannabinoid Receptor

Different GABAergic interneuron types have specific roles in hippocampal function, and anatomical as well as physiological features vary greatly between interneuron classes. Long-term plasticity of interneurons has mostly been studied in unidentified GABAergic cells and is known to be very heterogeneous. Here we tested whether cell type-specific plasticity properties in distinct GABAergic interneuron types might underlie this heterogeneity. We show that long-term potentiation (LTP) and depression (LTD), two common forms of synaptic plasticity, are expressed in a highly cell type-specific manner at glutamatergic synapses onto hippocampal GABAergic neurons. Both LTP and LTD are generated in interneurons expressing parvalbumin (PV+), whereas interneurons with similar axon distributions but expressing cannabinoid receptor-1 show no lasting plasticity in response to the same protocol. In addition, LTP or LTD occurs in PV+ interneurons with different efferent target domains. Perisomatic-targeting PV+ basket and axo-axonic interneurons express LTP, whereas glutamatergic synapses onto PV+ bistratified cells display LTD. Both LTP and LTD are pathway specific, independent of NMDA receptors, and occur at synapses with calcium-permeable (CP) AMPA receptors. Plasticity in interneurons with CP-AMPA receptors strongly modulates disynaptic GABAergic transmission onto CA1 pyramidal cells. We propose that long-term plasticity adjusts the synaptic strength between pyramidal cells and interneurons in a cell type-specific manner and, in the defined CA1 interneurons, shifts the spatial pattern of inhibitory weight from pyramidal cell dendrites to the perisomatic region.

[1]  G. Barrionuevo,et al.  Bidirectional Hebbian Plasticity at Hippocampal Mossy Fiber Synapses on CA3 Interneurons , 2008, The Journal of Neuroscience.

[2]  Edward O. Mann,et al.  Role of GABAergic inhibition in hippocampal network oscillations , 2007, Trends in Neurosciences.

[3]  Pablo Fuentealba,et al.  Cell Type-Specific Tuning of Hippocampal Interneuron Firing during Gamma Oscillations In Vivo , 2007, The Journal of Neuroscience.

[4]  I. Soltesz,et al.  Plasticity of interneuronal species diversity and parameter variance in neurological diseases , 2004, Trends in Neurosciences.

[5]  Alex M Thomson,et al.  Physiological and morphological diversity of immunocytochemically defined parvalbumin‐ and cholecystokinin‐positive interneurones in CA1 of the adult rat hippocampus , 2002, The Journal of comparative neurology.

[6]  S. Redman,et al.  Long-term plasticity at excitatory synapses on aspinous interneurons in area CA1 lacks synaptic specificity. , 1998, Journal of neurophysiology.

[7]  K. Deisseroth,et al.  Parvalbumin neurons and gamma rhythms enhance cortical circuit performance , 2009, Nature.

[8]  I. Soltesz,et al.  Long-term plasticity in interneurons of the dentate gyrus , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[9]  R. Dingledine,et al.  Long-term depression in hippocampal interneurons: joint requirement for pre- and postsynaptic events. , 1999, Science.

[10]  B. Sakmann,et al.  Differences in Ca2+ permeability of AMPA-type glutamate receptor channels in neocortical neurons caused by differential GluR-B subunit expression , 1994, Neuron.

[11]  Jozsef Csicsvari,et al.  Complementary Roles of Cholecystokinin- and Parvalbumin-Expressing GABAergic Neurons in Hippocampal Network Oscillations , 2005, The Journal of Neuroscience.

[12]  Fiona E. N. LeBeau,et al.  Recruitment of Parvalbumin-Positive Interneurons Determines Hippocampal Function and Associated Behavior , 2007, Neuron.

[13]  P. Jonas,et al.  PTP and LTP at a hippocampal mossy fiber-interneuron synapse , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[14]  D. Kullmann,et al.  Long-term synaptic plasticity in hippocampal interneurons , 2007, Nature Reviews Neuroscience.

[15]  J. Csicsvari,et al.  Reliability and State Dependence of Pyramidal Cell–Interneuron Synapses in the Hippocampus an Ensemble Approach in the Behaving Rat , 1998, Neuron.

[16]  G. Buzsáki,et al.  Direct afferent excitation and long-term potentiation of hippocampal interneurons. , 1982, Journal of neurophysiology.

[17]  Peter Somogyi,et al.  Cell surface domain specific postsynaptic currents evoked by identified GABAergic neurones in rat hippocampus in vitro , 2000, The Journal of physiology.

[18]  K. Tóth,et al.  Target-specific expression of presynaptic mossy fiber plasticity. , 1998, Science.

[19]  Dimitri M Kullmann,et al.  Hebbian LTP in feed-forward inhibitory interneurons and the temporal fidelity of input discrimination , 2005, Nature Neuroscience.

[20]  C. McBain,et al.  Long-Term Potentiation in Distinct Subtypes of Hippocampal Nonpyramidal Neurons , 1996, The Journal of Neuroscience.

[21]  Pankaj Sah,et al.  Calcium-permeable AMPA receptors mediate long-term potentiation in interneurons in the amygdala , 1998, Nature.

[22]  J. Lacaille,et al.  A hebbian form of long-term potentiation dependent on mGluR1a in hippocampal inhibitory interneurons , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[23]  Z. Borhegyi,et al.  Fast Synaptic Subcortical Control of Hippocampal Circuits , 2009, Science.

[24]  P. Castillo,et al.  Interneuron activity controls endocannabinoid-mediated presynaptic plasticity through calcineurin , 2008, Proceedings of the National Academy of Sciences.

[25]  G. Buzsáki,et al.  Neuronal Oscillations in Cortical Networks , 2004, Science.

[26]  P. Somogyi,et al.  Neuronal Diversity and Temporal Dynamics: The Unity of Hippocampal Circuit Operations , 2008, Science.

[27]  Y. Ben-Ari,et al.  Dendritic but not somatic GABAergic inhibition is decreased in experimental epilepsy , 2001, Nature Neuroscience.

[28]  R. Dingledine,et al.  Voltage-controlled plasticity at GluR2-deficient synapses onto hippocampal interneurons. , 2004, Journal of neurophysiology.

[29]  P. Somogyi,et al.  Immunoreactivity for the GABAA receptor alpha1 subunit, somatostatin and Connexin36 distinguishes axoaxonic, basket, and bistratified interneurons of the rat hippocampus. , 2007, Cerebral cortex.

[30]  D. Buonomano,et al.  Differential Effects of Excitatory and Inhibitory Plasticity on Synaptically Driven Neuronal Input-Output Functions , 2009, Neuron.

[31]  Siu Kang,et al.  Bidirectional plasticity in fast-spiking GABA circuits by visual experience , 2009, Nature.

[32]  Attila Losonczy,et al.  Cell type dependence and variability in the short‐term plasticity of EPSCs in identified mouse hippocampal interneurones , 2002, The Journal of physiology.

[33]  J. Isaac,et al.  Hippocampal Place Cell Firing Patterns Can Induce Long-Term Synaptic Plasticity In Vitro , 2009, The Journal of Neuroscience.

[34]  C. McBain Differential mechanisms of transmission and plasticity at mossy fiber synapses. , 2008, Progress in brain research.

[35]  Edward W. Kairiss,et al.  Field potential evidence for long-term potentiation of feed-forward inhibition in the rat dentate gyrus , 1987, Brain Research.

[36]  P. Somogyi,et al.  Brain-state- and cell-type-specific firing of hippocampal interneurons in vivo , 2003, Nature.

[37]  Chris J. McBain,et al.  The Role of the GluR2 Subunit in AMPA Receptor Function and Synaptic Plasticity , 2007, Neuron.

[38]  T. Tsumoto,et al.  Metabotropic Glutamate Receptor Type 5-Dependent Long-Term Potentiation of Excitatory Synapses on Fast-Spiking GABAergic Neurons in Mouse Visual Cortex , 2008, The Journal of Neuroscience.

[39]  T. Freund,et al.  Perisomatic Inhibition , 2007, Neuron.

[40]  J. Lacaille,et al.  Long-term synaptic plasticity in hippocampal feedback inhibitory networks. , 2008, Progress in brain research.

[41]  I. Soltesz,et al.  Cell type–specific gating of perisomatic inhibition by cholecystokinin , 2007, Nature Neuroscience.

[42]  Stéphanie Ratté,et al.  Synapse‐specific mGluR1‐dependent long‐term potentiation in interneurones regulates mouse hippocampal inhibition , 2004, The Journal of physiology.

[43]  P. Somogyi,et al.  Spike timing of dendrite-targeting bistratified cells during hippocampal network oscillations in vivo , 2004, Nature Neuroscience.

[44]  Jessica A. Cardin,et al.  Driving fast-spiking cells induces gamma rhythm and controls sensory responses , 2009, Nature.

[45]  Afia B Ali,et al.  Presynaptic Inhibition of GABAA receptor-mediated unitary IPSPs by cannabinoid receptors at synapses between CCK-positive interneurons in rat hippocampus. , 2007, Journal of neurophysiology.

[46]  P. Castillo,et al.  Heterosynaptic LTD of Hippocampal GABAergic Synapses A Novel Role of Endocannabinoids in Regulating Excitability , 2003, Neuron.

[47]  Zhengping Jia,et al.  Ca2+ Permeable AMPA Receptor Induced Long-Term Potentiation Requires PI3/MAP Kinases but Not Ca/CaM-Dependent Kinase II , 2009, PloS one.

[48]  Richard Miles,et al.  Interneuron Diversity series: Fast in, fast out – temporal and spatial signal processing in hippocampal interneurons , 2004, Trends in Neurosciences.

[49]  B. Gustafsson,et al.  Long-term potentiation in the hippocampus using depolarizing current pulses as the conditioning stimulus to single volley synaptic potentials , 1987, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[50]  T. Freund,et al.  Total Number and Ratio of Excitatory and Inhibitory Synapses Converging onto Single Interneurons of Different Types in the CA1 Area of the Rat Hippocampus , 1999, The Journal of Neuroscience.

[51]  B. Sakmann,et al.  Relative abundance of subunit mRNAs determines gating and Ca2+ permeability of AMPA receptors in principal neurons and interneurons in rat CNS , 1995, Neuron.

[52]  P. Jonas,et al.  Synaptic mechanisms of synchronized gamma oscillations in inhibitory interneuron networks , 2007, Nature Reviews Neuroscience.

[53]  P. Somogyi,et al.  Role of Ionotropic Glutamate Receptors in Long-Term Potentiation in Rat Hippocampal CA1 Oriens-Lacunosum Moleculare Interneurons , 2009, The Journal of Neuroscience.

[54]  J. Kauer,et al.  Hippocampal Interneurons Express a Novel Form of Synaptic Plasticity , 1997, Neuron.

[55]  P. Somogyi,et al.  Synaptic target selectivity and input of GABAergic basket and bistratified interneurons in the CA1 area of the rat hippocampus , 1996, Hippocampus.

[56]  K. Tóth,et al.  Afferent-specific innervation of two distinct AMPA receptor subtypes on single hippocampal interneurons , 1998, Nature Neuroscience.

[57]  G. Buzsáki,et al.  Place Representation within Hippocampal Networks Is Modified by Long-Term Potentiation , 2003, Neuron.

[58]  M. Bellomo,et al.  AMPA receptor subunits are differentially expressed in parvalbumin‐ and calretinin‐positive neurons of the rat hippocampus , 1998, The European journal of neuroscience.

[59]  Peter Somogyi,et al.  Anti-Hebbian Long-Term Potentiation in the Hippocampal Feedback Inhibitory Circuit , 2007, Science.

[60]  Rafael Yuste,et al.  Space matters: local and global dendritic Ca2+ compartmentalization in cortical interneurons , 2005, Trends in Neurosciences.

[61]  P. Somogyi,et al.  Identified axo-axonic cells are immunoreactive for GABA in the hippocampus visual cortex of the cat , 1985, Brain Research.

[62]  C. McBain,et al.  Two Loci of Expression for Long-Term Depression at Hippocampal Mossy Fiber-Interneuron Synapses , 2004, The Journal of Neuroscience.