Stimulated emission depletion nanoscopy of living cells using SNAP-tag fusion proteins.

[1]  Xiaowei Zhuang,et al.  Nano-imaging with Storm. , 2009, Nature photonics.

[2]  A. Ting,et al.  Fluorescent probes for super-resolution imaging in living cells , 2008, Nature Reviews Molecular Cell Biology.

[3]  S. Hell,et al.  Stimulated emission depletion (STED) nanoscopy of a fluorescent protein-labeled organelle inside a living cell , 2008, Proceedings of the National Academy of Sciences.

[4]  Marjeta Urh,et al.  HaloTag: a novel protein labeling technology for cell imaging and protein analysis. , 2008, ACS chemical biology.

[5]  E. Betzig,et al.  Live-cell photoactivated localization microscopy of nanoscale adhesion dynamics , 2008, Nature Methods.

[6]  S. Hell,et al.  STED microscopy with continuous wave beams , 2007, Nature Methods.

[7]  S. Hell Far-Field Optical Nanoscopy , 2007, Science.

[8]  J. Rogers,et al.  hORFeome v3.1: A resource of human open reading frames representing over 10,000 human genes , 2007, Genomics.

[9]  Michael D. Mason,et al.  Ultra-high resolution imaging by fluorescence photoactivation localization microscopy. , 2006, Biophysical journal.

[10]  Michael J Rust,et al.  Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM) , 2006, Nature Methods.

[11]  J. Lippincott-Schwartz,et al.  Imaging Intracellular Fluorescent Proteins at Nanometer Resolution , 2006, Science.

[12]  S. Hell,et al.  STED microscopy reveals that synaptotagmin remains clustered after synaptic vesicle exocytosis , 2006, Nature.

[13]  Volker Westphal,et al.  Nanoscale resolution in the focal plane of an optical microscope. , 2005, Physical review letters.

[14]  N. Johnsson,et al.  Specific labeling of cell surface proteins with chemically diverse compounds. , 2004, Journal of the American Chemical Society.

[15]  L. Keegan,et al.  Adenosine deaminases acting on RNA (ADARs): RNA-editing enzymes , 2004, Genome Biology.

[16]  S. Hell Toward fluorescence nanoscopy , 2003, Nature Biotechnology.

[17]  Roger Y Tsien,et al.  Imagining imaging's future. , 2003, Nature reviews. Molecular cell biology.

[18]  S. Hell,et al.  Focal spots of size lambda/23 open up far-field fluorescence microscopy at 33 nm axial resolution. , 2002, Physical review letters.

[19]  A. Pegg,et al.  The role of human O(6)-alkylguanine-DNA alkyltransferase in promoting 1,2-dibromoethane-induced genotoxicity in Escherichia coli. , 2000, Mutation research.

[20]  S. Hell,et al.  Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[21]  R Y Tsien,et al.  Specific covalent labeling of recombinant protein molecules inside live cells. , 1998, Science.

[22]  S. Hell,et al.  Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. , 1994, Optics letters.

[23]  Richard G. W. Anderson,et al.  Caveolin, a protein component of caveolae membrane coats , 1992, Cell.

[24]  D. Malacara-Hernández,et al.  PRINCIPLES OF OPTICS , 2011 .

[25]  Kathleen J Green,et al.  Intermediate filament assembly: dynamics to disease. , 2008, Trends in cell biology.

[26]  Roger Y. Tsien,et al.  Fluorophores for Confocal Microscopy: Photophysics and Photochemistry , 2006 .

[27]  H. Vogel,et al.  A general method for the covalent labeling of fusion proteins with small molecules in vivo , 2003, Nature Biotechnology.

[28]  D. Paul,et al.  Connexins, connexons, and intercellular communication. , 1996, Annual review of biochemistry.

[29]  J. Pawley,et al.  Handbook of Biological Confocal Microscopy , 1990, Springer US.

[30]  S. Hell,et al.  Video-Rate Far-Field Optical Nanoscopy Dissects Synaptic Vesicle Movement , 2008, Science.