Calibrated prediction regions for Gaussian random fields

This paper proposes a method to construct well‐calibrated frequentist prediction regions, with particular regard to the highest prediction density regions, which may be useful for multivariate spatial prediction. We consider, in particular, Gaussian random fields, and using a calibrating procedure we effectively improve the estimative prediction regions, because the coverage probability turns out to be closer to the target nominal value. Whenever a closed‐form expression for the well‐calibrated prediction region is not available, we may specify a simple bootstrap‐based estimator. Particular attention is dedicated to the associated, improved predictive distribution function, which can be usefully considered for identifying spatial locations with extreme or unusual observations. A simulation study is proposed in order to compare empirically the calibrated predictive regions with the estimative ones. The proposed method is then applied to the global model assessment of a deterministic model for the prediction of PM10 levels using data from a network of air quality monitoring stations.

[1]  Victor De Oliveira,et al.  On shortest prediction intervals in log-Gaussian random fields , 2009, Comput. Stat. Data Anal..

[2]  Dolores Catelan,et al.  Commuting-Adjusted Short-Term Health Impact Assessment of Airborne Fine Particles with Uncertainty Quantification via Monte Carlo Simulation , 2014, Environmental health perspectives.

[3]  Federica Giummole,et al.  Calibrating predictive distributions , 2014 .

[4]  H. Rue,et al.  Spatio-temporal modeling of particulate matter concentration through the SPDE approach , 2012, AStA Advances in Statistical Analysis.

[5]  Noel A Cressie,et al.  Multivariable spatial prediction , 1993 .

[6]  P. Guttorp,et al.  Statistical Assessment of Numerical Models * , 2003 .

[7]  R. Beran Calibrating Prediction Regions , 1990 .

[8]  Hao Zhang Inconsistent Estimation and Asymptotically Equal Interpolations in Model-Based Geostatistics , 2004 .

[9]  David R. Cox,et al.  Prediction and asymptotics , 1996 .

[10]  G. Fossati,et al.  Modelling of PM10 concentrations over Milano urban area using two aerosol modules , 2008, Environ. Model. Softw..

[11]  Sara Sjöstedt de Luna,et al.  The Bootstrap and Kriging Prediction Intervals , 2003 .

[12]  A note about calibrated prediction regions and distributions , 2012 .

[13]  Paolo Vidoni A note on modified estimative prediction limits and distributions , 1998 .

[14]  Victor De Oliveira,et al.  Prediction intervals for integrals of Gaussian random fields , 2015, Comput. Stat. Data Anal..

[15]  Dolores Catelan,et al.  Preferential sampling and Bayesian geostatistics: Statistical modeling and examples , 2016, Statistical methods in medical research.

[16]  K. Mardia,et al.  Maximum likelihood estimation of models for residual covariance in spatial regression , 1984 .

[17]  Adjusting estimative prediction limits , 2007 .

[18]  Lina Schelin,et al.  Kriging Prediction Intervals Based on Semiparametric Bootstrap , 2010 .

[19]  Paolo Vidoni,et al.  Improved Prediction Limits for a General Class of Gaussian Models , 2010 .