Lessons from the Environmental Antibiotic Resistome.

Antibiotic resistance is a global public health issue of growing proportions. All antibiotics are susceptible to resistance. The evidence is now clear that the environment is the single largest source and reservoir of resistance. Soil, aquatic, atmospheric, animal-associated, and built ecosystems are home to microbes that harbor antibiotic resistance elements and the means to mobilize them. The diversity and abundance of resistance in the environment is consistent with the ancient origins of antibiotics and a variety of studies support a long natural history of associated resistance. The implications are clear: Understanding the evolution of resistance in the environment, its diversity, and mechanisms is essential to the management of our existing and future antibiotic resources.

[1]  Célia M Manaia,et al.  Assessing the Risk of Antibiotic Resistance Transmission from the Environment to Humans: Non-Direct Proportionality between Abundance and Risk. , 2017, Trends in microbiology.

[2]  Ali H. A. Elbehery,et al.  Novel thermostable antibiotic resistance enzymes from the Atlantis II Deep Red Sea brine pool , 2016, Microbial biotechnology.

[3]  Tong Zhang,et al.  Co-occurrence of antibiotic and metal resistance genes revealed in complete genome collection , 2016, The ISME Journal.

[4]  Andrew C. Pawlowski,et al.  A diverse intrinsic antibiotic resistome from a cave bacterium , 2016, Nature Communications.

[5]  T. McAllister,et al.  Antimicrobial usage and resistance in beef production , 2016, Journal of Animal Science and Biotechnology.

[6]  Ji Li,et al.  Airborne bacterial contaminations in typical Chinese wet market with live poultry trade. , 2016, The Science of the total environment.

[7]  Yong-guan Zhu,et al.  Long-Term Impact of Field Applications of Sewage Sludge on Soil Antibiotic Resistome. , 2016, Environmental science & technology.

[8]  T. Hübschmann,et al.  Mycelia as a focal point for horizontal gene transfer among soil bacteria , 2016, Scientific Reports.

[9]  Alexander Mahnert,et al.  Microorganisms in Confined Habitats: Microbial Monitoring and Control of Intensive Care Units, Operating Rooms, Cleanrooms and the International Space Station , 2016, Front. Microbiol..

[10]  E. Kristiansson,et al.  The structure and diversity of human, animal and environmental resistomes , 2016, Microbiome.

[11]  S. Sørensen,et al.  Diverse gene functions in a soil mobilome , 2016 .

[12]  B. Weimer,et al.  The Bacterial Mobile Resistome Transfer Network Connecting the Animal and Human Microbiomes , 2016, Applied and Environmental Microbiology.

[13]  K. Smalla,et al.  Contaminations of organic fertilizers with antibiotic residues, resistance genes, and mobile genetic elements mirroring antibiotic use in livestock? , 2016, Applied Microbiology and Biotechnology.

[14]  A. Buschmann,et al.  Aquaculture as yet another environmental gateway to the development and globalisation of antimicrobial resistance. , 2016, The Lancet. Infectious diseases.

[15]  Yong-guan Zhu,et al.  Long-term field application of sewage sludge increases the abundance of antibiotic resistance genes in soil. , 2016, Environment international.

[16]  S. Hay,et al.  Antibiotic resistance is the quintessential One Health issue , 2016, Transactions of the Royal Society of Tropical Medicine and Hygiene.

[17]  John D. Spengler,et al.  Urban Transit System Microbial Communities Differ by Surface Type and Interaction with Humans and the Environment , 2016, mSystems.

[18]  Michael W Taylor,et al.  Diversity, structure and convergent evolution of the global sponge microbiome , 2016, Nature Communications.

[19]  Gerard D. Wright,et al.  The Prehistory of Antibiotic Resistance. , 2016, Cold Spring Harbor perspectives in medicine.

[20]  Patrick K. H. Lee,et al.  The roles of the outdoors and occupants in contributing to a potential pan-microbiome of the built environment: a review , 2016, Microbiome.

[21]  B. Icgen VanA-Type MRSA (VRSA) Emerged in Surface Waters , 2016, Bulletin of Environmental Contamination and Toxicology.

[22]  Philip Rosenstiel,et al.  The native microbiome of the nematode Caenorhabditis elegans: gateway to a new host-microbiome model , 2016, BMC Biology.

[23]  J. Lennon,et al.  Scaling laws predict global microbial diversity , 2016, Proceedings of the National Academy of Sciences.

[24]  James R. Cole,et al.  Clusters of Antibiotic Resistance Genes Enriched Together Stay Together in Swine Agriculture , 2016, mBio.

[25]  Brian C. Thomas,et al.  A new view of the tree of life , 2016, Nature Microbiology.

[26]  Y. Rudich,et al.  Effect of Dust Storms on the Atmospheric Microbiome in the Eastern Mediterranean. , 2016, Environmental science & technology.

[27]  D. Fitzpatrick,et al.  Antibiotic resistance genes across a wide variety of metagenomes. , 2016, FEMS microbiology ecology.

[28]  E. Brown,et al.  Antibacterial drug discovery in the resistance era , 2016, Nature.

[29]  R. Milo,et al.  Revised Estimates for the Number of Human and Bacteria Cells in the Body , 2016, bioRxiv.

[30]  Richard H. Baltz,et al.  Natural product discovery: past, present, and future , 2016, Journal of Industrial Microbiology & Biotechnology.

[31]  H. Goossens,et al.  Antimicrobial resistance: one world, one fight! , 2015, Antimicrobial Resistance and Infection Control.

[32]  E. Kristiansson,et al.  Isolation of novel IncA/C and IncN fluoroquinolone resistance plasmids from an antibiotic-polluted lake. , 2015, The Journal of antimicrobial chemotherapy.

[33]  S. Dowd,et al.  Gut Microbiome of an 11th Century A.D. Pre-Columbian Andean Mummy , 2015, PloS one.

[34]  Amy K. Cain,et al.  The Murray collection of pre-antibiotic era Enterobacteriacae: a unique research resource , 2015, Genome Medicine.

[35]  K. Holt,et al.  Genomic resistance island AGI1 carrying a complex class 1 integron in a multiply antibiotic-resistant ST25 Acinetobacter baumannii isolate. , 2015, The Journal of antimicrobial chemotherapy.

[36]  A. Martiny,et al.  The Ocean as a Global Reservoir of Antibiotic Resistance Genes , 2015, Applied and Environmental Microbiology.

[37]  G. Dantas,et al.  The Tetracycline Destructases: A Novel Family of Tetracycline-Inactivating Enzymes. , 2015, Chemistry & biology.

[38]  Jinling Huang,et al.  Horizontal gene transfer: building the web of life , 2015, Nature Reviews Genetics.

[39]  Jack A Gilbert,et al.  Hospital-associated microbiota and implications for nosocomial infections. , 2015, Trends in molecular medicine.

[40]  R. Kohli,et al.  Targets for Combating the Evolution of Acquired Antibiotic Resistance , 2015, Biochemistry.

[41]  G. Ying,et al.  Comprehensive evaluation of antibiotics emission and fate in the river basins of China: source analysis, multimedia modeling, and linkage to bacterial resistance. , 2015, Environmental science & technology.

[42]  Johan Bengtsson-Palme,et al.  Antibiotic resistance genes in the environment: prioritizing risks , 2015, Nature Reviews Microbiology.

[43]  Rob Knight,et al.  The microbiome of uncontacted Amerindians , 2015, Science Advances.

[44]  William P. Hanage,et al.  Functional Characterization of Bacteria Isolated from Ancient Arctic Soil Exposes Diverse Resistance Mechanisms to Modern Antibiotics , 2015, PloS one.

[45]  Hiroshi Nikaido,et al.  The Challenge of Efflux-Mediated Antibiotic Resistance in Gram-Negative Bacteria , 2015, Clinical Microbiology Reviews.

[46]  S. Baker,et al.  A return to the pre-antimicrobial era? , 2015, Science.

[47]  Teresa M. Coque,et al.  What is a resistance gene? Ranking risk in resistomes , 2014, Nature Reviews Microbiology.

[48]  J. Tiedje,et al.  Using the class 1 integron-integrase gene as a proxy for anthropogenic pollution , 2014, The ISME Journal.

[49]  Erik Kristiansson,et al.  Shotgun metagenomics reveals a wide array of antibiotic resistance genes and mobile elements in a polluted lake in India , 2014, Front. Microbiol..

[50]  Gerard D. Wright,et al.  Forces shaping the antibiotic resistome , 2014, BioEssays : news and reviews in molecular, cellular and developmental biology.

[51]  Gerard D. Wright,et al.  The antibiotic resistome: what's new? , 2014, Current opinion in microbiology.

[52]  E. Kristiansson,et al.  Fluoroquinolones and qnr genes in sediment, water, soil, and human fecal flora in an environment polluted by manufacturing discharges. , 2014, Environmental science & technology.

[53]  A. Zaritsky,et al.  Richness and Diversity in Dust Stormborne Biomes at the Southeast Mediterranean , 2014, Scientific Reports.

[54]  Michael R Gillings,et al.  Integrons: Past, Present, and Future , 2014, Microbiology and Molecular Reviews.

[55]  Pascal Simonet,et al.  Large-Scale Metagenomic-Based Study of Antibiotic Resistance in the Environment , 2014, Current Biology.

[56]  Janet K. Jansson,et al.  The microbial ecology of permafrost , 2014, Nature Reviews Microbiology.

[57]  J. Handelsman,et al.  Diverse Antibiotic Resistance Genes in Dairy Cow Manure , 2014, mBio.

[58]  Anuradha Ghosh,et al.  Insects Represent a Link between Food Animal Farms and the Urban Environment for Antibiotic Resistance Traits , 2014, Applied and Environmental Microbiology.

[59]  Dawn N. Birdsell,et al.  Yersinia pestis and the plague of Justinian 541-543 AD: a genomic analysis. , 2014, The Lancet. Infectious diseases.

[60]  Benjamin J Park,et al.  Invasive Fungal Infections after Natural Disasters , 2014, Emerging infectious diseases.

[61]  Jesper V Olsen,et al.  Pathogens and host immunity in the ancient human oral cavity , 2014, Nature Genetics.

[62]  D. Earn,et al.  Second-pandemic strain of Vibrio cholerae from the Philadelphia cholera outbreak of 1849. , 2014, The New England journal of medicine.

[63]  Yi Luo,et al.  Proliferation of Multidrug-Resistant New Delhi Metallo-β-lactamase Genes in Municipal Wastewater Treatment Plants in Northern China , 2014 .

[64]  Shibu Yooseph,et al.  A Metagenomic Framework for the Study of Airborne Microbial Communities , 2013, PloS one.

[65]  C. Walzer,et al.  Characterization of methicillin-resistant Staphylococcus spp. carrying the mecC gene, isolated from wildlife. , 2013, The Journal of antimicrobial chemotherapy.

[66]  D. Mevius,et al.  Characteristics of Cefotaxime-Resistant Escherichia coli from Wild Birds in The Netherlands , 2013, Applied and Environmental Microbiology.

[67]  E. Topp,et al.  The scourge of antibiotic resistance: the important role of the environment. , 2013, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[68]  P. Dorrestein,et al.  Interspecies Interactions Stimulate Diversification of the Streptomyces coelicolor Secreted Metabolome , 2013, mBio.

[69]  Gerard D. Wright,et al.  Intrinsic antibiotic resistance: mechanisms, origins, challenges and solutions. , 2013, International journal of medical microbiology : IJMM.

[70]  Thomas Backhaus,et al.  Human Health Risk Assessment (HHRA) for Environmental Development and Transfer of Antibiotic Resistance , 2013, Environmental health perspectives.

[71]  Stephen M. Krone,et al.  Influence of Humans on Evolution and Mobilization of Environmental Antibiotic Resistome , 2013, Emerging infectious diseases.

[72]  B. Duffy,et al.  The Culturable Soil Antibiotic Resistome: A Community of Multi-Drug Resistant Bacteria , 2013, PloS one.

[73]  M. Gillings,et al.  Into the Wild: Dissemination of Antibiotic Resistance Determinants via a Species Recovery Program , 2013, PloS one.

[74]  Shingo Ishihara,et al.  Vancomycin-Resistant Gram-Positive Cocci Isolated from the Saliva of Wild Songbirds , 2013, Current Microbiology.

[75]  J. Comstock,et al.  Dust and Biological Aerosols from the Sahara and Asia Influence Precipitation in the Western U.S. , 2013, Science.

[76]  M. Surette,et al.  Concentration-dependent activity of antibiotics in natural environments , 2013, Front. Microbio..

[77]  N. Moran,et al.  Long-Term Exposure to Antibiotics Has Caused Accumulation of Resistance Determinants in the Gut Microbiota of Honeybees , 2012, mBio.

[78]  R. Hall Integrons and gene cassettes: hotspots of diversity in bacterial genomes , 2012, Annals of the New York Academy of Sciences.

[79]  G. Dantas,et al.  The Shared Antibiotic Resistome of Soil Bacteria and Human Pathogens , 2012, Science.

[80]  Nuno Bandeira,et al.  Interkingdom metabolic transformations captured by microbial imaging mass spectrometry , 2012, Proceedings of the National Academy of Sciences.

[81]  N. Moran,et al.  Functional diversity within the simple gut microbiota of the honey bee , 2012, Proceedings of the National Academy of Sciences.

[82]  M. Gillings,et al.  Are humans increasing bacterial evolvability? , 2012, Trends in ecology & evolution.

[83]  Nuno Bandeira,et al.  Mass spectral molecular networking of living microbial colonies , 2012, Proceedings of the National Academy of Sciences.

[84]  Andrew C. Pawlowski,et al.  Antibiotic Resistance Is Prevalent in an Isolated Cave Microbiome , 2012, PloS one.

[85]  I. Droppo,et al.  Diversity of Integron- and Culture-Associated Antibiotic Resistance Genes in Freshwater Floc , 2012, Applied and Environmental Microbiology.

[86]  P. Nordmann,et al.  Wild Coastline Birds as Reservoirs of Broad-Spectrum-β-Lactamase-Producing Enterobacteriaceae in Miami Beach, Florida , 2012, Antimicrobial Agents and Chemotherapy.

[87]  J. Martiny,et al.  Functional Metagenomics Reveals Previously Unrecognized Diversity of Antibiotic Resistance Genes in Gulls , 2011, Front. Microbio..

[88]  Matthias Meyer,et al.  A draft genome of Yersinia pestis from victims of the Black Death , 2011, Nature.

[89]  D. Froese,et al.  Antibiotic resistance is ancient , 2011, Nature.

[90]  Gerard D. Wright,et al.  An ecological perspective of microbial secondary metabolism. , 2011, Current opinion in biotechnology.

[91]  Heike Schmitt,et al.  Antibiotic resistance gene spread due to manure application on agricultural fields. , 2011, Current opinion in microbiology.

[92]  G. Torres-Cortes,et al.  Characterization of novel antibiotic resistance genes identified by functional metagenomics on soil samples. , 2011, Environmental microbiology.

[93]  Jan Zalasiewicz,et al.  The Anthropocene: a new epoch of geological time? , 2011, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[94]  E. Kristiansson,et al.  Pyrosequencing of Antibiotic-Contaminated River Sediments Reveals High Levels of Resistance and Gene Transfer Elements , 2011, PloS one.

[95]  P. Švec,et al.  Antibiotic resistance in faecal bacteria (Escherichia coli, Enterococcus spp.) in feral pigeons , 2010, Journal of applied microbiology.

[96]  W. Meissner,et al.  Antibiotic-Resistant Escherichia coli Bacteria, Including Strains with Genes Encoding the Extended-Spectrum Beta-Lactamase and QnrS, in Waterbirds on the Baltic Sea Coast of Poland , 2010, Applied and Environmental Microbiology.

[97]  M. Dolejska,et al.  Phenotypic and genotypic characteristics of antimicrobial resistant Escherichia coli isolated from symbovine flies, cattle and sympatric insectivorous house martins from a farm in the Czech Republic (2006-2007). , 2010, Research in veterinary science.

[98]  Gerard D. Wright,et al.  Antibiotic resistance in the environment: a link to the clinic? , 2010, Current opinion in microbiology.

[99]  B. Olsen,et al.  Characterization, and comparison, of human clinical and black-headed gull (Larus ridibundus) extended-spectrum beta-lactamase-producing bacterial isolates from Kalmar, on the southeast coast of Sweden. , 2010, The Journal of antimicrobial chemotherapy.

[100]  L. Migliore,et al.  Tracking Acquired Antibiotic Resistance in Commensal Bacteria of Galápagos Land Iguanas: No Man, No Resistance , 2010, PloS one.

[101]  S. Kohshima,et al.  Application of real-time PCR array to the multiple detection of antibiotic resistant genes in glacier ice samples. , 2010, The Journal of general and applied microbiology.

[102]  P. Nordmann,et al.  Seagulls and Beaches as Reservoirs for Multidrug-Resistant Escherichia coli , 2010, Emerging infectious diseases.

[103]  J. Klimeš,et al.  Highly variable patterns of antimicrobial resistance in commensal Escherichia coli isolates from pigs, sympatric rodents, and flies. , 2009, Microbial drug resistance.

[104]  B. Olsen,et al.  Dissemination of Escherichia coli with CTX-M Type ESBL between Humans and Yellow-Legged Gulls in the South of France , 2009, PloS one.

[105]  Jo Handelsman,et al.  Resident microbiota of the gypsy moth midgut harbors antibiotic resistance determinants. , 2009, DNA and cell biology.

[106]  J. Martínez,et al.  Functional role of bacterial multidrug efflux pumps in microbial natural ecosystems. , 2009, FEMS microbiology reviews.

[107]  Heather K. Allen,et al.  Functional metagenomics reveals diverse β-lactamases in a remote Alaskan soil , 2009, The ISME Journal.

[108]  Tong Zhang,et al.  Antibiotic resistance genes in water environment , 2009, Applied Microbiology and Biotechnology.

[109]  George A. Jacoby,et al.  AmpC β-Lactamases , 2009, Clinical Microbiology Reviews.

[110]  T. Goldberg,et al.  Gastrointestinal Bacterial Transmission among Humans, Mountain Gorillas, and Livestock in Bwindi Impenetrable National Park, Uganda , 2008, Conservation biology : the journal of the Society for Conservation Biology.

[111]  G. Igrejas,et al.  Seagulls of the Berlengas Natural Reserve of Portugal as Carriers of Fecal Escherichia coli Harboring CTX-M and TEM Extended-Spectrum Beta-Lactamases , 2008, Applied and Environmental Microbiology.

[112]  J. Ellis,et al.  Characterization of Escherichia coli populations from gulls, landfill trash, and wastewater using ribotyping. , 2008, Diseases of aquatic organisms.

[113]  J. Imhoff,et al.  Subinhibitory concentrations of antibiotics induce phenazine production in a marine Streptomyces sp. , 2008, Journal of natural products.

[114]  Fernando Baquero,et al.  The Neglected Intrinsic Resistome of Bacterial Pathogens , 2008, PloS one.

[115]  B. Olsen,et al.  Dissemination of Multidrug-Resistant Bacteria into the Arctic , 2008, Emerging infectious diseases.

[116]  G. Church,et al.  Bacteria Subsisting on Antibiotics , 2007, Science.

[117]  D. Larsson,et al.  Effluent from drug manufactures contains extremely high levels of pharmaceuticals. , 2007, Journal of hazardous materials.

[118]  Grace Yim,et al.  Antibiotics as signalling molecules , 2007, Philosophical Transactions of the Royal Society B: Biological Sciences.

[119]  M. Dolejska,et al.  High prevalence of antimicrobial‐resistant genes and integrons in Escherichia coli isolates from Black‐headed Gulls in the Czech Republic , 2007, Journal of applied microbiology.

[120]  Gerard D. Wright The antibiotic resistome: the nexus of chemical and genetic diversity , 2007, Nature Reviews Microbiology.

[121]  L. Vinué,et al.  Detection of Escherichia coli harbouring extended-spectrum beta-lactamases of the CTX-M, TEM and SHV classes in faecal samples of wild animals in Portugal. , 2006, The Journal of antimicrobial chemotherapy.

[122]  Didier Mazel,et al.  Integrons: agents of bacterial evolution , 2006, Nature Reviews Microbiology.

[123]  E. Denamur,et al.  Effect of human vicinity on antimicrobial resistance and integrons in animal faecal Escherichia coli. , 2006, The Journal of antimicrobial chemotherapy.

[124]  J. Davies,et al.  The truth about antibiotics. , 2006, International journal of medical microbiology : IJMM.

[125]  Ramunas Stepanauskas,et al.  Co-selection of antibiotic and metal resistance. , 2006, Trends in microbiology.

[126]  J. Davies Are antibiotics naturally antibiotics? , 2006, Journal of Industrial Microbiology and Biotechnology.

[127]  D. Hughes,et al.  Sampling the Antibiotic Resistome , 2006, Science.

[128]  J. Weissenbach,et al.  Comparative Genomics of Multidrug Resistance in Acinetobacter baumannii , 2006, PLoS genetics.

[129]  M. Moeschberger,et al.  Spread of Musca domestica (Diptera: Muscidae), from Two Caged Layer Facilities to Neighboring Residences in Rural Ohio , 2005, Journal of medical entomology.

[130]  Alain Liard,et al.  Origin of Plasmid-Mediated Quinolone Resistance Determinant QnrA , 2005, Antimicrobial Agents and Chemotherapy.

[131]  A. H. Azahari,et al.  Determination of the flight range and dispersal of the house fly, Musca domestica (L.) using mark release recapture technique. , 2005, Tropical biomedicine.

[132]  J. H. Middleton,et al.  ENUMERATION AND ANTIBIOTIC RESISTANCE PATTERNS OF FECAL INDICATOR ORGANISMS ISOLATED FROM MIGRATORY CANADA GEESE (BRANTA CANADENSIS) , 2005, Journal of wildlife diseases.

[133]  J. Bérdy Bioactive Microbial Metabolites , 2005, The Journal of Antibiotics.

[134]  M. Galleni,et al.  Chromosome-Encoded CTX-M-3 from Kluyvera ascorbata: a Possible Origin of Plasmid-Borne CTX-M-1-Derived Cefotaximases , 2004, Antimicrobial Agents and Chemotherapy.

[135]  J. McClure,et al.  Dual effects of MLS antibiotics: transcriptional modulation and interactions on the ribosome. , 2004, Chemistry & biology.

[136]  J. Handelsman,et al.  Uncultured soil bacteria are a reservoir of new antibiotic resistance genes. , 2004, Environmental microbiology.

[137]  S. Salipante,et al.  Independent Origins of Subgroup Bl+B2 and Subgroup B3Metallo-β-Lactamases , 2004, Journal of Molecular Evolution.

[138]  I M Young,et al.  Interactions and Self-Organization in the Soil-Microbe Complex , 2004, Science.

[139]  Barry G. Hall,et al.  Evolution of the serine β-lactamases: past, present and future , 2004 .

[140]  H. Nikaido Molecular Basis of Bacterial Outer Membrane Permeability Revisited , 2003, Microbiology and Molecular Biology Reviews.

[141]  B. Hall,et al.  Phylogenetic Analysis Shows That the OXA b-Lactamase Genes Have Been on Plasmids for Millions of Years , 2002, Journal of Molecular Evolution.

[142]  N. French,et al.  Excretion of Vancomycin-Resistant Enterococci by Wild Mammals , 2002, Emerging infectious diseases.

[143]  E. Korpimäki,et al.  Antibiotic resistance: How wild are wild mammals? , 2001, Nature.

[144]  K. Nickerson,et al.  Natural Antibiotic Resistance of Bacteria Isolated from Larvae of the Oil Fly, Helaeomyia petrolei , 2000, Applied and Environmental Microbiology.

[145]  R. Pinner,et al.  Trends in infectious disease mortality in the United States during the 20th century. , 1999, JAMA.

[146]  G. Wright,et al.  Glycopeptide Antibiotic Resistance Genes in Glycopeptide-Producing Organisms , 1998, Antimicrobial Agents and Chemotherapy.

[147]  J. Davies,et al.  Origins and Evolution of Antibiotic Resistance , 1996, Microbiology and Molecular Biology Reviews.

[148]  D. Graur,et al.  Evolution of isopenicillin N synthase genes may have involved horizontal gene transfer. , 1990, Molecular biology and evolution.

[149]  S. Levy,et al.  Antibiotic-resistant bacteria in wild primates: increased prevalence in baboons feeding on human refuse , 1985, Applied and environmental microbiology.

[150]  J Davies,et al.  Aminoglycoside antibiotic-inactivating enzymes in actinomycetes similar to those present in clinical isolates of antibiotic-resistant bacteria. , 1973, Proceedings of the National Academy of Sciences of the United States of America.

[151]  Xuming Wang,et al.  Size-related bacterial diversity and tetracycline resistance gene abundance in the air of concentrated poultry feeding operations. , 2017, Environmental pollution.

[152]  V. Soina,et al.  Isolation of antibiotic resistance bacterial strains from Eastern Siberia permafrost sediments , 2008, Russian Journal of Genetics.

[153]  M. Begon,et al.  Enterobacteria: Antibiotic resistance found in wild rodents , 1999, Nature.

[154]  J. Stanley,et al.  Salmonella plasmids of the pre-antibiotic era. , 1992, Journal of general microbiology.

[155]  E. Cundliffe How antibiotic-producing organisms avoid suicide. , 1989, Annual review of microbiology.

[156]  M. Finland Emergence of antibiotic resistance in hospitals, 1935-1975. , 1979, Reviews of infectious diseases.

[157]  S. Waksman Microbial antagonisms and antibiotic substances [by] Selman A. Waksman . , 1945 .