Relating Operator Spaces via Adjunctions

This chapter uses categorical techniques to describe relations between various sets of operators on a Hilbert space, such as self-adjoint, positive, density, effect and projection operators. These relations, including various Hilbert-Schmidt isomorphisms of the form tr(A-), are expressed in terms of dual adjunctions, and maps between them. Of particular interest is the connection with quantum structures, via a dual adjunction between convex sets and effect modules. The approach systematically uses categories of modules, via their description as Eilenberg-Moore algebras of a monad.

[1]  Bob Coecke,et al.  New Structures for Physics , 2011 .

[2]  P. Busch Quantum states and generalized observables: a simple proof of Gleason's theorem. , 1999, Physical review letters.

[3]  Klaus Keimel,et al.  The monad of probability measures over compact ordered spaces and its Eilenberg–Moore algebras , 2008 .

[4]  J. Golan Semirings and their applications , 1999 .

[5]  Bart Jacobs,et al.  Semantics of Weakening and Contraction , 1994, Ann. Pure Appl. Log..

[6]  Bart Jacobs,et al.  Involutive Categories and Monoids, with a GNS-Correspondence , 2010, ArXiv.

[7]  Abbas Edalat An Extension of Gleason's Theorem for Quantum Computation , 2004 .

[8]  Bart Jacobs,et al.  The Expectation Monad in Quantum Foundations , 2011, ArXiv.

[9]  Sylvia Pulmannová,et al.  New trends in quantum structures , 2000 .

[10]  D. Foulis,et al.  Effect algebras and unsharp quantum logics , 1994 .

[11]  Bart Jacobs,et al.  Convexity, Duality and Effects , 2010, IFIP TCS.

[12]  Bart Jacobs,et al.  Coreflections in Algebraic Quantum Logic , 2012 .

[13]  Stanley Gudder Examples, problems, and results in effect algebras , 1996 .

[14]  Sylvia Pulmannová,et al.  Representation theorem for convex effect algebras , 1998 .

[15]  J. M. EGGER,et al.  On involutive monoidal categories , 2011 .

[16]  Bart Jacobs,et al.  Scalars, Monads, and Categories , 2010, Quantum Physics and Linguistics.

[17]  Ernst-Erich Doberkat,et al.  Eilenberg-Moore algebras for stochastic relations , 2006, Inf. Comput..

[18]  Prakash Panangaden,et al.  Quantum weakest preconditions , 2005, Mathematical Structures in Computer Science.

[19]  Robert E. Wilson Erratum and Addendum , 2013, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[20]  A. Gleason Measures on the Closed Subspaces of a Hilbert Space , 1957 .

[21]  Ana Sokolova,et al.  Exemplaric Expressivity of Modal Logics , 2010, J. Log. Comput..

[22]  Samson Abramsky,et al.  A categorical semantics of quantum protocols , 2004, Proceedings of the 19th Annual IEEE Symposium on Logic in Computer Science, 2004..

[23]  Peter Selinger,et al.  Towards a quantum programming language , 2004, Mathematical Structures in Computer Science.

[24]  Anders Kock,et al.  Closed categories generated by commutative monads , 1971, Journal of the Australian Mathematical Society.

[25]  Michael A. Arbib,et al.  Algebraic Approaches to Program Semantics , 1986, Texts and Monographs in Computer Science.

[26]  M. H. Stone Postulates for the barycentric calculus , 1949 .

[27]  Bart Jacobs,et al.  Probabilities, distribution monads, and convex categories , 2011, Theor. Comput. Sci..

[28]  T. Heinosaari,et al.  The Mathematical Language of Quantum Theory: From Uncertainty to Entanglement , 2012 .

[29]  David J. Foulis,et al.  Observables, states, and symmetries in the context of CB-effect algebras , 2007 .

[30]  Samson Abramsky,et al.  Domain Theory in Logical Form , 1991, LICS.

[31]  E. Beggs,et al.  Bar Categories and Star Operations , 2006, math/0701008.

[32]  Edsger W. Dijkstra,et al.  Predicate Calculus and Program Semantics , 1989, Texts and Monographs in Computer Science.

[33]  Bart Jacobs,et al.  Categorical Logic and Type Theory , 2001, Studies in logic and the foundations of mathematics.

[34]  M. Barr,et al.  Toposes, Triples and Theories , 1984 .