Random Splitting of Fluid Models: Positive Lyapunov Exponents

. In this paper, we apply the framework of [5] to give sufficient conditions for the random splitting systems introduced in [2] to have a positive top Lyapunov exponent. We verify these conditions for the randomly split conservative Lorenz-96 equations and randomly split Galerkin approximations of the 2D Euler equations on the torus. In doing so, we highlight particular structures in the equations such as shearing. Since a positive top Lyapunov exponent is an indicator of chaos which in turn is a feature of turbulence, our results show these randomly split fluid models have important characteristics of turbulent flow.

[1]  Jonathan C. Mattingly,et al.  Random Splitting of Fluid Models: Unique Ergodicity and Convergence , 2022, Communications in Mathematical Physics.

[2]  J. Bedrossian,et al.  Chaos in stochastic 2d Galerkin-Navier-Stokes , 2021, 2106.13748.

[3]  J. Bedrossian,et al.  A regularity method for lower bounds on the Lyapunov exponent for stochastic differential equations , 2020, Inventiones mathematicae.

[4]  B. Mityagin The Zero Set of a Real Analytic Function , 2015, Mathematical Notes.

[5]  F. Maggi Sets of Finite Perimeter and Geometric Variational Problems: An Introduction to Geometric Measure Theory , 2012 .

[6]  M. Benaim,et al.  Qualitative properties of certain piecewise deterministic Markov processes , 2012, 1204.4143.

[7]  David A. Cox Pure and Applied Mathematics: A Wiley Series of Texts, Monographs and Tracts , 2012 .

[8]  Tobias Hurth,et al.  Invariant densities for dynamical systems with random switching , 2012, 1203.5744.

[9]  M. Nikolenko,et al.  Translated from Russian by , 2008 .

[10]  V. Araújo Random Dynamical Systems , 2006, math/0608162.

[11]  Jonathan C. Mattingly,et al.  Ergodicity of the 2D Navier-Stokes equations with degenerate stochastic forcing , 2004, math/0406087.

[12]  A. D. Jackson,et al.  Products of random matrices. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[13]  T. O’Neil Geometric Measure Theory , 2002 .

[14]  Persi Diaconis,et al.  Iterated Random Functions , 1999, SIAM Rev..

[15]  E. B. Jensen The coarea formula , 1998 .

[16]  Modeling Turbulence by Systems of Coupled Gyrostats , 1993 .

[17]  P. Baxendale Lyapunov exponents and relative entropy for a stochastic flow of diffeomorphisms , 1989 .

[18]  P. Bougerol,et al.  Comparaison des exposants de Lyapounov des processus markoviens multiplicatifs , 1988 .

[19]  Y. Kifer Ergodic theory of random transformations , 1986 .

[20]  H. Furstenberg,et al.  Random matrix products and measures on projective spaces , 1983 .

[21]  A. B. Glukhovskii Nonlinear systems that are gyrostat superpositions , 1982 .

[22]  A. Guivarc'h Quelques proprietes asymptotiques des produits de matrices aleatoires , 1980 .

[23]  H. Sussmann Orbits of families of vector fields and integrability of distributions , 1973 .

[24]  L. Hörmander Hypoelliptic second order differential equations , 1967 .

[25]  T. Nagano Linear differential systems with singularities and an application to transitive Lie algebras , 1966 .