Long-Lasting Rescue of Network and Cognitive Dysfunction in a Genetic Schizophrenia Model

[1]  A. Grace,et al.  Stress during critical periods of development and risk for schizophrenia , 2019, Schizophrenia Research.

[2]  D. Lewis,et al.  Alterations in cortical interneurons and cognitive function in schizophrenia , 2019, Neurobiology of Disease.

[3]  Ilana B. Witten,et al.  Dopamine modulation of prefrontal cortex activity is manifold and operates at multiple temporal and spatial scales , 2018, bioRxiv.

[4]  A. Grace,et al.  The Circuitry of Dopamine System Regulation and its Disruption in Schizophrenia: Insights Into Treatment and Prevention. , 2019, Schizophrenia bulletin.

[5]  J. Gordon,et al.  Somatostatin Interneurons Facilitate Hippocampal-Prefrontal Synchrony and Prefrontal Spatial Encoding , 2018, Neuron.

[6]  B. Luna,et al.  Adolescence as a neurobiological critical period for the development of higher-order cognition , 2018, Neuroscience & Biobehavioral Reviews.

[7]  Alan Carleton,et al.  Restoring wild-type-like CA1 network dynamics and behavior during adulthood in a mouse model of schizophrenia , 2018, Nature Neuroscience.

[8]  E. Kandel,et al.  Impaired recruitment of dopamine neurons during working memory in mice with striatal D2 receptor overexpression , 2018, Nature Communications.

[9]  P. Caroni,et al.  Infralimbic cortex is required for learning alternatives to prelimbic promoted associations through reciprocal connectivity , 2018, Nature Communications.

[10]  P. O’Donnell,et al.  Dominant-Negative DISC1 Alters the Dopaminergic Modulation of Inhibitory Interneurons in the Mouse Prefrontal Cortex , 2018, Molecular Neuropsychiatry.

[11]  I. Weiner,et al.  Early neuromodulation prevents the development of brain and behavioral abnormalities in a rodent model of schizophrenia , 2018, Molecular Psychiatry.

[12]  Camilo J. Mininni,et al.  Deletion of dopamine D2 receptors from parvalbumin interneurons in mouse causes schizophrenia-like phenotypes , 2018, Proceedings of the National Academy of Sciences.

[13]  T. Werge,et al.  22q11.2 Deletion Syndrome Is Associated With Impaired Auditory Steady-State Gamma Response , 2017, Schizophrenia bulletin.

[14]  D. Lewis,et al.  Mapping pathologic circuitry in schizophrenia. , 2018, Handbook of clinical neurology.

[15]  D. Weinberger,et al.  Genetic insights into the neurodevelopmental origins of schizophrenia , 2017, Nature Reviews Neuroscience.

[16]  Rafael Yuste,et al.  Altered Cortical Ensembles in Mouse Models of Schizophrenia , 2017, Neuron.

[17]  A. Grace,et al.  Adolescence as a period of vulnerability and intervention in schizophrenia: Insights from the MAM model , 2016, Neuroscience & Biobehavioral Reviews.

[18]  Kuei Yuan Tseng,et al.  Mechanisms contributing to prefrontal cortex maturation during adolescence , 2016, Neuroscience & Biobehavioral Reviews.

[19]  A. Grace,et al.  The Nucleus Reuniens of the Midline Thalamus Gates Prefrontal-Hippocampal Modulation of Ventral Tegmental Area Dopamine Neuron Activity , 2016, The Journal of Neuroscience.

[20]  K. Fish,et al.  Pathological Basis for Deficient Excitatory Drive to Cortical Parvalbumin Interneurons in Schizophrenia. , 2016, The American journal of psychiatry.

[21]  Nikolaos Karalis,et al.  Prefrontal neuronal assemblies temporally control fear behaviour , 2016, Nature.

[22]  A. Grace,et al.  Loss of Parvalbumin in the Hippocampus of MAM Schizophrenia Model Rats Is Attenuated by Peripubertal Diazepam , 2016, The international journal of neuropsychopharmacology.

[23]  Kuei Yuan Tseng,et al.  GABAergic Function as a Limiting Factor for Prefrontal Maturation during Adolescence , 2016, Trends in Neurosciences.

[24]  Dennis R. Grayson,et al.  Altering the course of schizophrenia: progress and perspectives , 2016, Nature Reviews Drug Discovery.

[25]  D. Price,et al.  Altered Disrupted-in-Schizophrenia-1 Function Affects the Development of Cortical Parvalbumin Interneurons by an Indirect Mechanism , 2016, PloS one.

[26]  J. Gordon,et al.  Developmental Inhibition of Gsk3 Rescues Behavioral and Neurophysiological Deficits in a Mouse Model of Schizophrenia Predisposition , 2016, Neuron.

[27]  P. Caroni,et al.  PV plasticity sustained through D1/5 dopamine signaling required for long-term memory consolidation , 2016, Nature Neuroscience.

[28]  Torfi Sigurdsson,et al.  Hippocampal-Prefrontal Interactions in Cognition, Behavior and Psychiatric Disease , 2016, Front. Syst. Neurosci..

[29]  Joseph A. Gogos,et al.  Age-Dependent Specific Changes in Area CA2 of the Hippocampus and Social Memory Deficit in a Mouse Model of the 22q11.2 Deletion Syndrome , 2016, Neuron.

[30]  S. Heckers,et al.  GABAergic mechanisms of hippocampal hyperactivity in schizophrenia , 2015, Schizophrenia Research.

[31]  Wolf Singer,et al.  Oscillations and Neuronal Dynamics in Schizophrenia: The Search for Basic Symptoms and Translational Opportunities , 2015, Biological Psychiatry.

[32]  D. Lewis,et al.  Alterations in Cortical Network Oscillations and Parvalbumin Neurons in Schizophrenia , 2015, Biological Psychiatry.

[33]  A. LaMantia,et al.  Cognitive ability is associated with altered medial frontal cortical circuits in the LgDel mouse model of 22q11.2DS. , 2015, Cerebral cortex.

[34]  Renee Hoch,et al.  Gamma Rhythms Link Prefrontal Interneuron Dysfunction with Cognitive Inflexibility in Dlx5/6 +/− Mice , 2015, Neuron.

[35]  P. Caroni,et al.  Early- and Late-Born Parvalbumin Basket Cell Subpopulations Exhibiting Distinct Regulation and Roles in Learning , 2015, Neuron.

[36]  J. Gordon,et al.  Synchrony in schizophrenia: a window into circuit-level pathophysiology , 2015, Current Opinion in Neurobiology.

[37]  Mark D. Morrissey,et al.  Parvalbumin and GAD65 Interneuron Inhibition in the Ventral Hippocampus Induces Distinct Behavioral Deficits Relevant to Schizophrenia , 2014, The Journal of Neuroscience.

[38]  D. Lodge,et al.  A fundamental role for hippocampal parvalbumin in the dopamine hyperfunction associated with schizophrenia , 2014, Schizophrenia Research.

[39]  Peter Jonas,et al.  Fast-spiking, parvalbumin+ GABAergic interneurons: From cellular design to microcircuit function , 2014, Science.

[40]  B. Roth,et al.  Chemogenetic tools to interrogate brain functions. , 2014, Annual review of neuroscience.

[41]  T. Bourgeron,et al.  Cntnap4/Caspr4 Differentially Contributes to GABAergic and Dopaminergic Synaptic Transmission , 2014, Nature.

[42]  Pico Caroni,et al.  Parvalbumin-expressing basket-cell network plasticity induced by experience regulates adult learning , 2013, Nature.

[43]  N. Dehorter,et al.  Erbb4 Deletion from Fast-Spiking Interneurons Causes Schizophrenia-like Phenotypes , 2013, Neuron.

[44]  Kuei Yuan Tseng,et al.  Periadolescent Exposure to the NMDA Receptor Antagonist MK-801 Impairs the Functional Maturation of Local GABAergic Circuits in the Adult Prefrontal Cortex , 2013, The Journal of Neuroscience.

[45]  Mark D. Tricklebank,et al.  Decoupling of Sleep-Dependent Cortical and Hippocampal Interactions in a Neurodevelopmental Model of Schizophrenia , 2012, Neuron.

[46]  André A. Fenton,et al.  Early Cognitive Experience Prevents Adult Deficits in a Neurodevelopmental Schizophrenia Model , 2012, Neuron.

[47]  A. Fisahn,et al.  Neuregulin and dopamine modulation of hippocampal gamma oscillations is dependent on dopamine D4 receptors , 2012, Proceedings of the National Academy of Sciences.

[48]  G. Buzsáki,et al.  Mechanisms of gamma oscillations. , 2012, Annual review of neuroscience.

[49]  Vladislav Volman,et al.  Downregulation of Parvalbumin at Cortical GABA Synapses Reduces Network Gamma Oscillatory Activity , 2011, The Journal of Neuroscience.

[50]  W. Singer,et al.  The development of neural synchrony and large-scale cortical networks during adolescence: relevance for the pathophysiology of schizophrenia and neurodevelopmental hypothesis. , 2011, Schizophrenia bulletin.

[51]  S. Floresco,et al.  Reducing Prefrontal Gamma-Aminobutyric Acid Activity Induces Cognitive, Behavioral, and Dopaminergic Abnormalities That Resemble Schizophrenia , 2011, Biological Psychiatry.

[52]  Tony J. Simon,et al.  22q11.2 microdeletions: linking DNA structural variation to brain dysfunction and schizophrenia , 2010, Nature Reviews Neuroscience.

[53]  Robert W McCarley,et al.  Gamma oscillation deficits and the onset and early progression of schizophrenia. , 2010, Harvard review of psychiatry.

[54]  J. Gordon,et al.  Impaired hippocampal–prefrontal synchrony in a genetic mouse model of schizophrenia , 2010, Nature.

[55]  J. Gogos,et al.  Cognition in mouse models of schizophrenia susceptibility genes. , 2010, Schizophrenia bulletin.

[56]  K. Nakazawa,et al.  Postnatal NMDA receptor ablation in corticolimbic interneurons confers schizophrenia-like phenotypes , 2010, Nature Neuroscience.

[57]  R. Andrew Chambers,et al.  The neonatal ventral hippocampal lesion as a heuristic neurodevelopmental model of schizophrenia , 2009, Behavioural Brain Research.

[58]  T. Hafting,et al.  Frequency of gamma oscillations routes flow of information in the hippocampus , 2009, Nature.

[59]  E. Erdfelder,et al.  Statistical power analyses using G*Power 3.1: Tests for correlation and regression analyses , 2009, Behavior research methods.

[60]  Eugenio Rodriguez,et al.  The development of neural synchrony reflects late maturation and restructuring of functional networks in humans , 2009, Proceedings of the National Academy of Sciences.

[61]  A. Grace,et al.  Hippocampal dysfunction and disruption of dopamine system regulation in an animal model of schizophrenia , 2008, Neurotoxicity Research.

[62]  D. Lewis,et al.  A Neonatal Ventral Hippocampal Lesion Causes Functional Deficits in Adult Prefrontal Cortical Interneurons , 2008, The Journal of Neuroscience.

[63]  Kuei Yuan Tseng,et al.  Post-Pubertal Disruption of Medial Prefrontal Cortical Dopamine–Glutamate Interactions in a Developmental Animal Model of Schizophrenia , 2007, Biological Psychiatry.

[64]  Satoshi Kida,et al.  Dominant-negative DISC1 transgenic mice display schizophrenia-associated phenotypes detected by measures translatable to humans , 2007, Proceedings of the National Academy of Sciences.

[65]  Kuei Yuan Tseng,et al.  Dopamine modulation of prefrontal cortical interneurons changes during adolescence. , 2006, Cerebral cortex.

[66]  H. Würbel,et al.  Animal neuropsychology: Validation of the Intra-Dimensional Extra-Dimensional set shifting task for mice , 2006, Behavioural Brain Research.

[67]  A. Meyer-Lindenberg,et al.  Regionally specific disturbance of dorsolateral prefrontal-hippocampal functional connectivity in schizophrenia. , 2005, Archives of general psychiatry.

[68]  A. Deutch,et al.  Neurotensin Activates GABAergic Interneurons in the Prefrontal Cortex , 2005, The Journal of Neuroscience.

[69]  E. A. Berg,et al.  A simple objective technique for measuring flexibility in thinking. , 1948, The Journal of general psychology.