"Magic rod" rotaxanes: the hydrogen bond-directed synthesis of molecular shuttles under thermodynamic control.

[reaction: see text] Peptide [2]- and [3]rotaxanes are assembled in high yields under thermodynamic control using hydrogen bonding interactions and reversible cross olefin metathesis.

[1]  R. Nolte,et al.  Synthesis of porphyrin-containing [3]rotaxanes by olefin metathesis. , 2003, Angewandte Chemie.

[2]  David A. Leigh,et al.  Organic “Magic Rings”: The Hydrogen Bond-Directed Assembly of Catenanes under Thermodynamic Control , 1999 .

[3]  F. Vögtle,et al.  SIZE COMPLEMENTARITY OF MACROCYCLIC CAVITIES AND STOPPERS IN AMIDE-ROTAXANES , 1999 .

[4]  J. Sanders,et al.  Reversible synthesis of π-associated [2]catenanes by ring-closing metathesis: towards dynamic combinatorial libraries of catenanes , 1998 .

[5]  M. Fujita,et al.  Made-to-Order Assembling of [2]Catenanes from Palladium(II)-Linked Rectangular Molecular Boxes , 1998 .

[6]  J. Sanders,et al.  Reversible five-component assembly of a [2]catenane from a chiral metallomacrocycle and a dinaphtho-crown ether , 1998 .

[7]  M. Fujita,et al.  Quantitative self-assembly of a [2]catenane from two preformed molecular rings , 1994, Nature.

[8]  P. Beer,et al.  Anion-templated rotaxane formation. , 2002, Journal of the American Chemical Society.

[9]  David A Leigh,et al.  Benzylic Imine Catenates: Readily Accessible Octahedral Analogues of the Sauvage Catenates. , 2001, Angewandte Chemie.

[10]  Andrew J. P. White,et al.  Template‐Directed Synthesis of a [2]Rotaxane by the Clipping under Thermodynamic Control of a Crown Ether Like Macrocycle Around a Dialkylammonium Ion , 2001 .

[11]  G. Rapenne,et al.  Efficient synthesis of a molecular knot by copper(I)-induced formation of the precursor followed by ruthenium(II)-catalysed ring closing metathesis , 1997 .

[12]  A. Fürstner,et al.  Total Syntheses of (+)-Ricinelaidic Acid Lactone and of (−)-Gloeosporone Based on Transition-Metal-Catalyzed C−C Bond Formations , 1997 .

[13]  T. Takata,et al.  "Unlock-Lock" Approach to [2] and [3]Rotaxanes:Entering of a Ring through Disulfide Linkage That is Unlocked by Thiol "Key" , 2000 .

[14]  R. Grubbs,et al.  Synthesis of Catenane Structures via Ring-Closing Metathesis. , 1999, The Journal of organic chemistry.

[15]  Douglas Philp,et al.  Self‐Assembly in Natural and Unnatural Systems , 1996 .

[16]  M. Walsh,et al.  Axially coordinated porphyrins as new rotaxanestoppers , 2000 .

[17]  J. F. Stoddart,et al.  The Mechanism of the Slippage Approach to Rotaxanes. Origin of the “All-or-Nothing” Substituent Effect† , 1998 .

[18]  P. Beer,et al.  Self-Assembly of a Mixed-Valence Copper(II)/Copper(III) Dithiocarbamate Catenane. , 2001, Angewandte Chemie.

[19]  J. F. Stoddart,et al.  Rotaxane formation under thermodynamic control , 1999 .

[20]  David A. Leigh,et al.  Peptide-Based Molecular Shuttles , 1997 .

[21]  J. F. Stoddart,et al.  Interlocked and Intertwined Structures and Superstructures , 1996 .

[22]  J. F. Stoddart,et al.  Thermodynamic Synthesis of Rotaxanes by Imine Exchange , 1999 .

[23]  Stuart J Rowan,et al.  Dynamic covalent chemistry. , 2002, Angewandte Chemie.

[24]  Jean-Marie Lehn,et al.  Dynamic Combinatorial Chemistry and Virtual Combinatorial Libraries , 1999 .

[25]  Robert H. Grubbs,et al.  High‐Yield Synthesis of [2] Catenanes by Intramolecular Ring‐Closing Metathesis , 1997 .

[26]  Jonathan S. Lindsey,et al.  Self-Assembly in Synthetic Routes to Molecular Devices. Biological Principles and Chemical Perspectives: A Review , 1991 .