The Impact of 18 Ancestral and Horizontally-Acquired Regulatory Proteins upon the Transcriptome and sRNA Landscape of Salmonella enterica serovar Typhimurium

We know a great deal about the genes used by the model pathogen Salmonella enterica serovar Typhimurium to cause disease, but less about global gene regulation. New tools for studying transcripts at the single nucleotide level now offer an unparalleled opportunity to understand the bacterial transcriptome, and expression of the small RNAs (sRNA) and coding genes responsible for the establishment of infection. Here, we define the transcriptomes of 18 mutants lacking virulence-related global regulatory systems that modulate the expression of the SPI1 and SPI2 Type 3 secretion systems of S. Typhimurium strain 4/74. Using infection-relevant growth conditions, we identified a total of 1257 coding genes that are controlled by one or more regulatory system, including a sub-class of genes that reflect a new level of cross-talk between SPI1 and SPI2. We directly compared the roles played by the major transcriptional regulators in the expression of sRNAs, and discovered that the RpoS (σ38) sigma factor modulates the expression of 23% of sRNAs, many more than other regulatory systems. The impact of the RNA chaperone Hfq upon the steady state levels of 280 sRNA transcripts is described, and we found 13 sRNAs that are co-regulated with SPI1 and SPI2 virulence genes. We report the first example of an sRNA, STnc1480, that is subject to silencing by H-NS and subsequent counter-silencing by PhoP and SlyA. The data for these 18 regulatory systems is now available to the bacterial research community in a user-friendly online resource, SalComRegulon.

[1]  Konrad U. Förstner,et al.  Dual RNA-seq unveils noncoding RNA functions in host–pathogen interactions , 2016, Nature.

[2]  S. Porwollik,et al.  Analysis of Two Complementary Single-Gene Deletion Mutant Libraries of Salmonella Typhimurium in Intraperitoneal Infection of BALB/c Mice , 2016, Front. Microbiol..

[3]  Bryan D. Kolaczkowski,et al.  Genomic Targets and Features of BarA-UvrY (-SirA) Signal Transduction Systems , 2015, PloS one.

[4]  K. Hokamp,et al.  RNA-seq Brings New Insights to the Intra-Macrophage Transcriptome of Salmonella Typhimurium , 2015, PLoS pathogens.

[5]  P. Dersch,et al.  Regulatory principles governing Salmonella and Yersinia virulence , 2015, Front. Microbiol..

[6]  Aviv Regev,et al.  Pathogen Cell-to-Cell Variability Drives Heterogeneity in Host Immune Responses , 2015, Cell.

[7]  J. Vogel,et al.  Small RNA-based feedforward loop with AND-gate logic regulates extrachromosomal DNA transfer in Salmonella , 2015, Proceedings of the National Academy of Sciences.

[8]  J. Crump,et al.  Global Burden of Invasive Nontyphoidal Salmonella Disease, 2010 , 2015, Emerging infectious diseases.

[9]  C. Peano,et al.  Characterization of the Escherichia coli σS core regulon by Chromatin Immunoprecipitation-sequencing (ChIP-seq) analysis , 2015, Scientific Reports.

[10]  Christopher C. Overall,et al.  Analysis of the Salmonella regulatory network suggests involvement of SsrB and H-NS in σE-regulated SPI-2 gene expression , 2015, Front. Microbiol..

[11]  B. Jones,et al.  Two-Component Regulators Control hilA Expression by Controlling fimZ and hilE Expression within Salmonella enterica Serovar Typhimurium , 2014, Infection and Immunity.

[12]  G. Storz,et al.  MicL, a new σE-dependent sRNA, combats envelope stress by repressing synthesis of Lpp, the major outer membrane lipoprotein , 2014, Genes & development.

[13]  J. Coppee,et al.  Expanding the RpoS/σS-Network by RNA Sequencing and Identification of σS-Controlled Small RNAs in Salmonella , 2014, PloS one.

[14]  Dongwoo Shin,et al.  The Iron-Sensing Fur Regulator Controls Expression Timing and Levels of Salmonella Pathogenicity Island 2 Genes in the Course of Environmental Acidification , 2014, Infection and Immunity.

[15]  Charles J. Dorman,et al.  Bacterial Regulon Evolution: Distinct Responses and Roles for the Identical OmpR Proteins of Salmonella Typhimurium and Escherichia coli in the Acid Stress Response , 2014, PLoS genetics.

[16]  K. Hughes,et al.  The Salmonella Spi1 Virulence Regulatory Protein HilD Directly Activates Transcription of the Flagellar Master Operon flhDC , 2014, Journal of bacteriology.

[17]  K. Hokamp,et al.  An infection-relevant transcriptomic compendium for Salmonella enterica Serovar Typhimurium. , 2013, Cell host & microbe.

[18]  S. C. Viegas,et al.  An RpoS-dependent sRNA regulates the expression of a chaperone involved in protein folding , 2013, RNA.

[19]  David N. Adamson,et al.  Rapid and robust signaling in the CsrA cascade via RNA–protein interactions and feedback regulation , 2013, Proceedings of the National Academy of Sciences.

[20]  Julian Parkhill,et al.  Comprehensive Assignment of Roles for Salmonella Typhimurium Genes in Intestinal Colonization of Food-Producing Animals , 2013, PLoS genetics.

[21]  J. Vila,et al.  Salmonella enterica Serovar Typhimurium Skills To Succeed in the Host: Virulence and Regulation , 2013, Clinical Microbiology Reviews.

[22]  M. Guillier,et al.  Expanding control in bacteria: interplay between small RNAs and transcriptional regulators to control gene expression. , 2013, Current opinion in microbiology.

[23]  E. Wagner Cycling of RNAs on Hfq , 2013, RNA biology.

[24]  Roland R. Regoes,et al.  Stabilization of cooperative virulence by the expression of an avirulent phenotype , 2013, Nature.

[25]  Thomas M. Keane,et al.  ChIP-seq and transcriptome analysis of the OmpR regulon of Salmonella enterica serovars Typhi and Typhimurium reveals accessory genes implicated in host colonization , 2012, Molecular microbiology.

[26]  J. Vogel,et al.  An atlas of Hfq‐bound transcripts reveals 3′ UTRs as a genomic reservoir of regulatory small RNAs , 2012, The EMBO journal.

[27]  Günter P. Wagner,et al.  Measurement of mRNA abundance using RNA-seq data: RPKM measure is inconsistent among samples , 2012, Theory in Biosciences.

[28]  Nicholas A Feasey,et al.  Invasive non-typhoidal salmonella disease: an emerging and neglected tropical disease in Africa , 2012, The Lancet.

[29]  Pimlapas Leekitcharoenphon,et al.  The transcriptional landscape and small RNAs of Salmonella enterica serovar Typhimurium , 2012, Proceedings of the National Academy of Sciences.

[30]  B. Görke,et al.  Rewiring two-component signal transduction with small RNAs. , 2012, Current opinion in microbiology.

[31]  C. Dorman,et al.  A Fundamental Regulatory Mechanism Operating through OmpR and DNA Topology Controls Expression of Salmonella Pathogenicity Islands SPI-1 and SPI-2 , 2012, PLoS genetics.

[32]  B. Stecher,et al.  The streptomycin mouse model for Salmonella diarrhea: functional analysis of the microbiota, the pathogen’s virulence factors, and the host’s mucosal immune response , 2012, Immunological reviews.

[33]  J. Slauch,et al.  Integrating Global Regulatory Input Into the Salmonella Pathogenicity Island 1 Type III Secretion System , 2012, Genetics.

[34]  Jörg Vogel,et al.  A conserved RpoS-dependent small RNA controls the synthesis of major porin OmpD , 2011, Nucleic acids research.

[35]  Michael McClelland,et al.  The Fur regulon in anaerobically grown Salmonella enterica sv. Typhimurium: identification of new Fur targets , 2011, BMC Microbiology.

[36]  Lore Cloots,et al.  Network-based functional modeling of genomics, transcriptomics and metabolism in bacteria. , 2011, Current opinion in microbiology.

[37]  J. Vogel,et al.  Hfq and its constellation of RNA , 2011, Nature Reviews Microbiology.

[38]  Matthias Heinemann,et al.  The Cost of Virulence: Retarded Growth of Salmonella Typhimurium Cells Expressing Type III Secretion System 1 , 2011, PLoS pathogens.

[39]  B. Coombes,et al.  Transcriptional Priming of Salmonella Pathogenicity Island-2 Precedes Cellular Invasion , 2011, PloS one.

[40]  D. Georgellis,et al.  Integration of a complex regulatory cascade involving the SirA/BarA and Csr global regulatory systems that controls expression of the Salmonella SPI‐1 and SPI‐2 virulence regulons through HilD , 2011, Molecular microbiology.

[41]  J. Alonso,et al.  Fur Activates the Expression of Salmonella enterica Pathogenicity Island 1 by Directly Interacting with the hilD Operator In Vivo and In Vitro , 2011, PloS one.

[42]  M. Sikes,et al.  Fur Negatively Regulates hns and Is Required for the Expression of HilA and Virulence in Salmonella enterica Serovar Typhimurium , 2010, Journal of bacteriology.

[43]  Joshua N. Adkins,et al.  Discovery of Novel Secreted Virulence Factors from Salmonella enterica Serovar Typhimurium by Proteomic Analysis of Culture Supernatants , 2010, Infection and Immunity.

[44]  J. Slauch,et al.  FliZ Regulates Expression of the Salmonella Pathogenicity Island 1 Invasion Locus by Controlling HilD Protein Activity in Salmonella enterica Serovar Typhimurium , 2010, Journal of bacteriology.

[45]  Riet De Smet,et al.  Advantages and limitations of current network inference methods , 2010, Nature Reviews Microbiology.

[46]  Chase L. Beisel,et al.  Base pairing small RNAs and their roles in global regulatory networks. , 2010, FEMS microbiology reviews.

[47]  Shane C. Dillon,et al.  Genome‐wide analysis of the H‐NS and Sfh regulatory networks in Salmonella Typhimurium identifies a plasmid‐encoded transcription silencing mechanism , 2010, Molecular microbiology.

[48]  Aamir Fazil,et al.  The global burden of nontyphoidal Salmonella gastroenteritis. , 2010, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[49]  Javier López-Garrido,et al.  Regulation of Salmonella enterica Pathogenicity Island 1 by DNA Adenine Methylation , 2010, Genetics.

[50]  M. Whiteside,et al.  Identification of the Regulatory Logic Controlling Salmonella Pathoadaptation by the SsrA-SsrB Two-Component System , 2010, PLoS genetics.

[51]  Colin N. Dewey,et al.  RNA-Seq gene expression estimation with read mapping uncertainty , 2009, Bioinform..

[52]  Peter F. Stadler,et al.  Fast Mapping of Short Sequences with Mismatches, Insertions and Deletions Using Index Structures , 2009, PLoS Comput. Biol..

[53]  D. Merrell,et al.  Complex Role of Fur in Pathogenesis , 2022 .

[54]  E. Groisman,et al.  Control of Salmonella pathogenicity island-2 gene expression. , 2009, Current opinion in microbiology.

[55]  Hyunjin Yoon,et al.  Coordinated Regulation of Virulence during Systemic Infection of Salmonella enterica Serovar Typhimurium , 2009, PLoS pathogens.

[56]  J. Vogel A rough guide to the non‐coding RNA world of Salmonella , 2009, Molecular microbiology.

[57]  J. Puente,et al.  HilD-mediated transcriptional cross-talk between SPI-1 and SPI-2 , 2008, Proceedings of the National Academy of Sciences.

[58]  Daniel M. Stoebel,et al.  Anti-silencing: overcoming H-NS-mediated repression of transcription in Gram-negative enteric bacteria. , 2008, Microbiology.

[59]  Wolf-Dietrich Hardt,et al.  Self-destructive cooperation mediated by phenotypic noise , 2008, Nature.

[60]  J. Vogel,et al.  Deep Sequencing Analysis of Small Noncoding RNA and mRNA Targets of the Global Post-Transcriptional Regulator, Hfq , 2008, PLoS genetics.

[61]  C. V. Rao,et al.  FliZ Is a Posttranslational Activator of FlhD4C2-Dependent Flagellar Gene Expression , 2008, Journal of bacteriology.

[62]  T. Latifi,et al.  Overcoming H-NS-mediated Transcriptional Silencing of Horizontally Acquired Genes by the PhoP and SlyA Proteins in Salmonella enterica* , 2008, Journal of Biological Chemistry.

[63]  M. Parker,et al.  During infection of epithelial cells Salmonella enterica serovar Typhimurium undergoes a time-dependent transcriptional adaptation that results in simultaneous expression of three type 3 secretion systems , 2008, Cellular microbiology.

[64]  J. Casadesús,et al.  Clocks and switches: bacterial gene regulation by DNA adenine methylation. , 2008, Current opinion in microbiology.

[65]  Hanah Margalit,et al.  Small RNAs encoded within genetic islands of Salmonella typhimurium show host-induced expression and role in virulence , 2008, Nucleic acids research.

[66]  Akiko Takaya,et al.  Coordinated Regulation of Expression of Salmonella Pathogenicity Island 1 and Flagellar Type III Secretion Systems by ATP-Dependent ClpXP Protease , 2008, Journal of bacteriology.

[67]  J. Slauch,et al.  Fur Regulates Expression of the Salmonella Pathogenicity Island 1 Type III Secretion System through HilD , 2007, Journal of bacteriology.

[68]  Akinori Kato,et al.  The PhoQ/PhoP regulatory network of Salmonella enterica. , 2008, Advances in experimental medicine and biology.

[69]  Raju Tomer,et al.  A small non‐coding RNA of the invasion gene island (SPI‐1) represses outer membrane protein synthesis from the Salmonella core genome , 2007, Molecular microbiology.

[70]  G. Friedlander,et al.  Regulation of gene expression by small non-coding RNAs: a quantitative view , 2007, Molecular systems biology.

[71]  Kathleen Marchal,et al.  Delineation of the Salmonella enterica Serovar Typhimurium HilA Regulon through Genome-Wide Location and Transcript Analysis , 2007, Journal of bacteriology.

[72]  R. Hengge,et al.  The molecular basis of selective promoter activation by the σS subunit of RNA polymerase , 2007, Molecular microbiology.

[73]  P. Freemont,et al.  SseL, a Salmonella deubiquitinase required for macrophage killing and virulence , 2007, Proceedings of the National Academy of Sciences.

[74]  S. Elledge,et al.  Harnessing homologous recombination in vitro to generate recombinant DNA via SLIC , 2007, Nature Methods.

[75]  T. Miki,et al.  Identification of amino acid residues of Salmonella SlyA that are critical for transcriptional regulation. , 2007, Microbiology.

[76]  J. Slauch,et al.  Adaptation to the host environment: regulation of the SPI1 type III secretion system in Salmonella enterica serovar Typhimurium. , 2007, Current opinion in microbiology.

[77]  J. Vogel,et al.  The RNA chaperone Hfq is essential for the virulence of Salmonella typhimurium , 2007, Molecular microbiology.

[78]  J. Vogel,et al.  σE-dependent small RNAs of Salmonella respond to membrane stress by accelerating global omp mRNA decay , 2006, Molecular microbiology.

[79]  M. Hensel,et al.  Regulation of Salmonella pathogenicity island 2 genes by independent environmental signals. , 2006, International journal of medical microbiology : IJMM.

[80]  L. Bossi,et al.  Loss of Hfq activates the σE‐dependent envelope stress response in Salmonella enterica , 2006, Molecular microbiology.

[81]  Y. Wormstone,et al.  DNA Adenine Methylation Regulates Virulence Gene Expression in Salmonella enterica Serovar Typhimurium , 2006, Journal of bacteriology.

[82]  N. Dowidar,et al.  Identification of New Flagellar Genes of Salmonella enterica Serovar Typhimurium , 2006, Journal of bacteriology.

[83]  C. Altier,et al.  Identification of CsrC and Characterization of Its Role in Epithelial Cell Invasion in Salmonella enterica Serovar Typhimurium , 2006, Infection and Immunity.

[84]  R. Kadner,et al.  Regulation by Iron: RNA Rules the Rust , 2005, Journal of bacteriology.

[85]  J. Slauch,et al.  HilD, HilC and RtsA constitute a feed forward loop that controls expression of the SPI1 type three secretion system regulator hilA in Salmonella enterica serovar Typhimurium , 2005, Molecular microbiology.

[86]  S. Gottesman Micros for microbes: non-coding regulatory RNAs in bacteria. , 2005, Trends in genetics : TIG.

[87]  Mei Liu,et al.  SlyA Regulates Function of Salmonella Pathogenicity Island 2 (SPI-2) and Expression of SPI-2-Associated Genes , 2005, Infection and Immunity.

[88]  E. Groisman,et al.  The PhoP/PhoQ system controls the intramacrophage type three secretion system of Salmonella enterica , 2005, Molecular microbiology.

[89]  F. Fang,et al.  Co‐regulation of Salmonella enterica genes required for virulence and resistance to antimicrobial peptides by SlyA and PhoP/PhoQ , 2005, Molecular microbiology.

[90]  Kathleen Marchal,et al.  Comparison of the PhoPQ Regulon in Escherichia coli and Salmonella typhimurium , 2005, Journal of Molecular Evolution.

[91]  Eduardo A. Groisman,et al.  Transcriptional Control of the Antimicrobial Peptide Resistance ugtL Gene by the Salmonella PhoP and SlyA Regulatory Proteins* , 2004, Journal of Biological Chemistry.

[92]  G. Crooks,et al.  WebLogo: a sequence logo generator. , 2004, Genome research.

[93]  B. Ahmer,et al.  Pathways Leading from BarA/SirA to Motility andVirulence Gene Expression inSalmonella , 2003, Journal of bacteriology.

[94]  John Quackenbush Microarrays--Guilt by Association , 2003, Science.

[95]  L. Kenney,et al.  Dual regulation by phospho‐OmpR of ssrA/B gene expression in Salmonella pathogenicity island 2 , 2003, Molecular microbiology.

[96]  Rebecca L Wilson,et al.  HilE Interacts with HilD and Negatively Regulates hilA Transcription and Expression of the Salmonella enterica Serovar Typhimurium Invasive Phenotype , 2003, Infection and Immunity.

[97]  Arthur Thompson,et al.  Unravelling the biology of macrophage infection by gene expression profiling of intracellular Salmonella enterica , 2002, Molecular microbiology.

[98]  John Quackenbush Genomics. Microarrays--guilt by association. , 2003, Science.

[99]  R. Hengge-aronis,et al.  Signal Transduction and Regulatory Mechanisms Involved in Control of the σS (RpoS) Subunit of RNA Polymerase , 2002, Microbiology and Molecular Biology Reviews.

[100]  N. Busquets,et al.  Intracellular cyclic AMP concentration is decreased in Salmonella typhimurium fur mutants. , 2002, Microbiology.

[101]  S. Rubino,et al.  Epitope tagging of chromosomal genes in Salmonella , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[102]  G. Howell,et al.  Proteomic detection of PhoPQ‐ and acid‐mediated repression of Salmonella motility , 2001, Proteomics.

[103]  R. Hengge-aronis,et al.  What makes an Escherichia coli promoter σS dependent? Role of the −13/−14 nucleotide promoter positions and region 2.5 of σS , 2001 .

[104]  S. Iyoda,et al.  A flagellar gene fliZ regulates the expression of invasion genes and virulence phenotype in Salmonella enterica serovar Typhimurium. , 2001, Microbial pathogenesis.

[105]  R. Hengge-aronis,et al.  What makes an Escherichia coli promoter sigma(S) dependent? Role of the -13/-14 nucleotide promoter positions and region 2.5 of sigma(S). , 2001, Molecular microbiology.

[106]  E. Wagner,et al.  Switching on and off with RNA. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[107]  Catherine A. Lee,et al.  The cis requirements for transcriptional activation by HilA, a virulence determinant encoded on SPI‐1 , 2000, Molecular microbiology.

[108]  B. Wanner,et al.  One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[109]  M. Hensel,et al.  Salmonella Pathogenicity Island 2 , 2000, Molecular microbiology.

[110]  Robert L. Lucas,et al.  Multiple Factors Independently RegulatehilA and Invasion Gene Expression in Salmonella enterica Serovar Typhimurium , 2000, Journal of bacteriology.

[111]  J. Casadesús,et al.  DNA adenine methylase mutants of Salmonella typhimurium show defects in protein secretion, cell invasion, and M cell cytotoxicity. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[112]  W. Hardt,et al.  Characterization of SprA, an AraC‐like transcriptional regulator encoded within the Salmonella typhimurium pathogenicity island 1 , 1999, Molecular microbiology.

[113]  M. Roberts,et al.  The Alternative Sigma Factor, ςE, Is Critically Important for the Virulence of Salmonella typhimurium , 1999, Infection and Immunity.

[114]  M. Roberts,et al.  The alternative sigma factor, sigmaE, is critically important for the virulence of Salmonella typhimurium. , 1999, Infection and immunity.

[115]  S Falkow,et al.  Macrophage‐dependent induction of the Salmonella pathogenicity island 2 type III secretion system and its role in intracellular survival , 1998, Molecular microbiology.

[116]  V. de Lorenzo,et al.  Coordinated Repression In Vitro of the DivergentfepA-fes Promoters of Escherichia coli by the Iron Uptake Regulation (Fur) Protein , 1998, Journal of bacteriology.

[117]  W. Sierralta,et al.  Curli Fibers Are Highly Conserved between Salmonella typhimurium and Escherichia coli with Respect to Operon Structure and Regulation , 1998, Journal of bacteriology.

[118]  F. Fang,et al.  Central regulatory role for the RpoS sigma factor in expression of Salmonella dublin plasmid virulence genes , 1995, Journal of bacteriology.

[119]  W. Wackernagel,et al.  Gene disruption in Escherichia coli: TcR and KmR cassettes with the option of Flp-catalyzed excision of the antibiotic-resistance determinant. , 1995, Gene.

[120]  V. Robbe-Saule,et al.  The Salmonella typhimurium katF (rpoS) gene: cloning, nucleotide sequence, and regulation of spvR and spvABCD virulence plasmid genes , 1994, Journal of bacteriology.

[121]  F. Fang,et al.  The alternative sigma factor katF (rpoS) regulates Salmonella virulence. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[122]  C. Gualerzi,et al.  Mutations altering chromosomal protein H-NS induce mini-Mu transposition. , 1991, The New biologist.

[123]  C. Wray,et al.  Experimental Salmonella typhimurium infection in calves. , 1978, Research in veterinary science.