Cancer genetics and epigenetics: two sides of the same coin?

[1]  M. Shan,et al.  Frequent low expression of chromatin remodeling gene ARID1A in breast cancer and its clinical significance. , 2012, Cancer epidemiology.

[2]  Gangning Liang,et al.  DNA methylation screening identifies driver epigenetic events of cancer cell survival. , 2012, Cancer cell.

[3]  J. Maher Faculty Opinions recommendation of IDH mutation impairs histone demethylation and results in a block to cell differentiation. , 2012 .

[4]  E. Greer,et al.  Histone methylation: a dynamic mark in health, disease and inheritance , 2012, Nature Reviews Genetics.

[5]  H. Clevers,et al.  Wnt signaling, stem cells, and cancer of the gastrointestinal tract. , 2012, Cold Spring Harbor perspectives in biology.

[6]  D. Birnbaum,et al.  Mutations in ASXL1 are associated with poor prognosis across the spectrum of malignant myeloid diseases , 2012, Journal of Hematology & Oncology.

[7]  Christian Gilissen,et al.  Mutations in SWI/SNF chromatin remodeling complex gene ARID1B cause Coffin-Siris syndrome , 2012, Nature Genetics.

[8]  Adam A. Margolin,et al.  The Cancer Cell Line Encyclopedia enables predictive modeling of anticancer drug sensitivity , 2012, Nature.

[9]  S. Berger,et al.  IDH mutation impairs histone demethylation and results in a block to cell differentiation , 2012, Nature.

[10]  A. Viale,et al.  IDH1 mutation is sufficient to establish the glioma hypermethylator phenotype , 2012, Nature.

[11]  D. Patel,et al.  Structure-Based Mechanistic Insights into DNMT1-Mediated Maintenance DNA Methylation , 2012, Science.

[12]  M. Esteller,et al.  Cancer epigenomics: beyond genomics. , 2012, Current opinion in genetics & development.

[13]  Joseph K. Pickrell,et al.  DNaseI sensitivity QTLs are a major determinant of human expression variation , 2011, Nature.

[14]  S. Orkin,et al.  Dnmt3a silences hematopoietic stem cell self-renewal , 2011, Nature Genetics.

[15]  J. Berg,et al.  Dnmt3a is essential for hematopoietic stem cell differentiation , 2011, Nature Genetics.

[16]  Giacomo Cavalli,et al.  Trithorax group proteins: switching genes on and keeping them active , 2011, Nature Reviews Molecular Cell Biology.

[17]  F. Slack,et al.  MicroRNAs en route to the clinic: progress in validating and targeting microRNAs for cancer therapy , 2011, Nature Reviews Cancer.

[18]  J. Herman,et al.  Combination epigenetic therapy has efficacy in patients with refractory advanced non-small cell lung cancer. , 2011, Cancer discovery.

[19]  S. Lowe,et al.  RNAi screen identifies Brd4 as a therapeutic target in acute myeloid leukaemia , 2011, Nature.

[20]  Peter A. Jones,et al.  A decade of exploring the cancer epigenome — biological and translational implications , 2011, Nature Reviews Cancer.

[21]  Pengzhi Yu,et al.  Dynamic chromatin states in human ES cells reveal potential regulatory sequences and genes involved in pluripotency , 2011, Cell Research.

[22]  H. Blau,et al.  DNA Demethylation Dynamics , 2011, Cell.

[23]  O. Abdel-Wahab,et al.  TET family proteins and their role in stem cell differentiation and transformation. , 2011, Cell stem cell.

[24]  Michael A Choti,et al.  Inactivating mutations of the chromatin remodeling gene ARID2 in hepatocellular carcinoma , 2011, Nature Genetics.

[25]  Huanming Yang,et al.  Frequent mutations of chromatin remodeling genes in transitional cell carcinoma of the bladder , 2011, Nature Genetics.

[26]  R. Young,et al.  BET Bromodomain Inhibition as a Therapeutic Strategy to Target c-Myc , 2011, Cell.

[27]  A. Atala Re: Exome Sequencing Identifies Frequent Mutation of the SWI/SNF Complex Gene PBRM1 in Renal Carcinoma , 2011 .

[28]  R. Ward,et al.  Dominantly inherited constitutional epigenetic silencing of MLH1 in a cancer-affected family is linked to a single nucleotide variant within the 5'UTR. , 2011, Cancer cell.

[29]  A. Melnick,et al.  The Leukemogenicity of AML1-ETO Is Dependent on Site-Specific Lysine Acetylation , 2011, Science.

[30]  E. Kavanagh,et al.  Histone onco-modifications , 2011, Oncogene.

[31]  L. Vissers,et al.  De novo nonsense mutations in ASXL1 cause Bohring-Opitz syndrome , 2011, Nature Genetics.

[32]  R. Pieters,et al.  The heterogeneity of pediatric MLL-rearranged acute myeloid leukemia , 2011, Leukemia.

[33]  Steven J. M. Jones,et al.  Frequent mutation of histone modifying genes in non-Hodgkin lymphoma , 2011, Nature.

[34]  Lars Bullinger,et al.  MLL-rearranged leukemia is dependent on aberrant H3K79 methylation by DOT1L. , 2011, Cancer cell.

[35]  S. Armstrong,et al.  Selective killing of mixed lineage leukemia cells by a potent small-molecule DOT1L inhibitor. , 2011, Cancer cell.

[36]  C. Roberts,et al.  SWI/SNF nucleosome remodellers and cancer , 2011, Nature Reviews Cancer.

[37]  S. Fu,et al.  The involvement of CHD5 hypermethylation in laryngeal squamous cell carcinoma. , 2011, Oral oncology.

[38]  H. Firpi,et al.  Enhancers in embryonic stem cells are enriched for transposable elements and genetic variations associated with cancers , 2011, Nucleic acids research.

[39]  J. Workman,et al.  Signals and combinatorial functions of histone modifications. , 2011, Annual review of biochemistry.

[40]  Benjamin J. Raphael,et al.  Integrated Genomic Analyses of Ovarian Carcinoma , 2011, Nature.

[41]  A. Mai,et al.  Targeting Histone Demethylases: A New Avenue for the Fight against Cancer. , 2011, Genes & cancer.

[42]  Steven M. Johnson,et al.  Determinants of nucleosome organization in primary human cells , 2011, Nature.

[43]  I. Shih,et al.  Mutation and Loss of Expression of ARID1A in Uterine Low-grade Endometrioid Carcinoma , 2011, The American journal of surgical pathology.

[44]  N. Yoo,et al.  Genetic and expressional alterations of CHD genes in gastric and colorectal cancers , 2011, Histopathology.

[45]  Yong-mei Zhu,et al.  Exome sequencing identifies somatic mutations of DNA methyltransferase gene DNMT3A in acute monocytic leukemia , 2011, Nature Genetics.

[46]  Richard A Young,et al.  Control of the Embryonic Stem Cell State , 2011, Cell.

[47]  M. Esteller,et al.  Cancer epigenetics reaches mainstream oncology , 2011, Nature Medicine.

[48]  D. Hanahan,et al.  Hallmarks of Cancer: The Next Generation , 2011, Cell.

[49]  A. Chase,et al.  Aberrations of EZH2 in Cancer , 2011, Clinical Cancer Research.

[50]  G. Crabtree,et al.  ATP-dependent chromatin remodeling: genetics, genomics and mechanisms , 2011, Cell Research.

[51]  D. Iliopoulos,et al.  Epigenetic aberrations during oncogenesis , 2011, Cellular and Molecular Life Sciences.

[52]  A. S. Cheng,et al.  Epigenetic regulation of signaling pathways in cancer: Role of the histone methyltransferase EZH2 , 2011, Journal of gastroenterology and hepatology.

[53]  C. Rice,et al.  Suppression of inflammation by a synthetic histone mimic , 2010, Nature.

[54]  Joshua F. McMichael,et al.  DNMT3A mutations in acute myeloid leukemia. , 2010, The New England journal of medicine.

[55]  J. Licht,et al.  Leukemic IDH1 and IDH2 mutations result in a hypermethylation phenotype, disrupt TET2 function, and impair hematopoietic differentiation. , 2010, Cancer cell.

[56]  S. Memarzadeh,et al.  Bmi-1 is a crucial regulator of prostate stem cell self-renewal and malignant transformation. , 2010, Cell stem cell.

[57]  Pablo Tamayo,et al.  Loss of the tumor suppressor Snf5 leads to aberrant activation of the Hedgehog-Gli pathway , 2010, Nature Medicine.

[58]  L. Aravind,et al.  Impaired hydroxylation of 5-methylcytosine in myeloid cancers with mutant TET2 , 2010, Nature.

[59]  Andrew J. Wilson,et al.  Hdac3 is essential for the maintenance of chromatin structure and genome stability. , 2010, Cancer cell.

[60]  P. A. Futreal,et al.  Exome sequencing identifies frequent mutation of the SWI/SNF complex gene PBRM1 in renal carcinoma , 2010, Nature.

[61]  V. V. Lao,et al.  Impact of base analogues within a CpG dinucleotide on the binding of DNA by the methyl-binding domain of MeCP2 and methylation by DNMT1. , 2010, Biochemistry.

[62]  Benjamin Tycko,et al.  Allele-specific DNA methylation: beyond imprinting. , 2010, Human molecular genetics.

[63]  Richard A. Moore,et al.  ARID1A mutations in endometriosis-associated ovarian carcinomas. , 2010, The New England journal of medicine.

[64]  Tian-Li Wang,et al.  Frequent Mutations of Chromatin Remodeling Gene ARID1A in Ovarian Clear Cell Carcinoma , 2010, Science.

[65]  A. Mills Throwing the cancer switch: reciprocal roles of polycomb and trithorax proteins , 2010, Nature Reviews Cancer.

[66]  S. Henikoff,et al.  Changes in H2A.Z occupancy and DNA methylation during B-cell lymphomagenesis. , 2010, Genome research.

[67]  Peter A. Jones,et al.  DNA methylation and cellular reprogramming. , 2010, Trends in cell biology.

[68]  William B. Smith,et al.  Selective inhibition of BET bromodomains , 2010, Nature.

[69]  Peter A. Jones,et al.  Epigenetic Modifications as Therapeutic Targets , 2010, Nature Biotechnology.

[70]  G. Sauvageau,et al.  Polycomb group proteins: multi-faceted regulators of somatic stem cells and cancer. , 2010, Cell stem cell.

[71]  Yi Zhang,et al.  Active DNA demethylation: many roads lead to Rome , 2010, Nature Reviews Molecular Cell Biology.

[72]  B. Bohnhorst,et al.  Novel CHD7 mutations contributing to the mutation spectrum in patients with CHARGE syndrome. , 2010, European journal of medical genetics.

[73]  T. Naoe,et al.  Array-based genomic resequencing of human leukemia , 2010, Oncogene.

[74]  Yang Shi,et al.  Reversal of histone methylation: biochemical and molecular mechanisms of histone demethylases. , 2010, Annual review of biochemistry.

[75]  C. Harris,et al.  Genetic variation in microRNA networks: the implications for cancer research , 2010, Nature Reviews Cancer.

[76]  R. Wilson,et al.  Identification of a CpG island methylator phenotype that defines a distinct subgroup of glioma. , 2010, Cancer cell.

[77]  Lee E. Edsall,et al.  Distinct epigenomic landscapes of pluripotent and lineage-committed human cells. , 2010, Cell stem cell.

[78]  Y. Zeng,et al.  Intensive expression of Bmi-1 is a new independent predictor of poor outcome in patients with ovarian carcinoma , 2010, BMC Cancer.

[79]  E. Dermitzakis,et al.  Candidate Causal Regulatory Effects by Integration of Expression QTLs with Complex Trait Genetic Associations , 2010, PLoS genetics.

[80]  N. Cox,et al.  Trait-Associated SNPs Are More Likely to Be eQTLs: Annotation to Enhance Discovery from GWAS , 2010, PLoS genetics.

[81]  R. Elkon,et al.  BRD7 is a candidate tumour suppressor gene required for p53 function , 2010, Nature Cell Biology.

[82]  D. Matei,et al.  Epigenetic therapies for chemoresensitization of epithelial ovarian cancer. , 2010, Gynecologic oncology.

[83]  G. Crabtree,et al.  Chromatin remodelling during development , 2010, Nature.

[84]  N. Haass,et al.  Genetics of basal cell carcinoma , 2009, The Australasian journal of dermatology.

[85]  J. Manley,et al.  The TET family of proteins: functions and roles in disease. , 2009, Journal of molecular cell biology.

[86]  Peter A. Jones,et al.  Rethinking how DNA methylation patterns are maintained , 2009, Nature Reviews Genetics.

[87]  G. Hon,et al.  Predictive chromatin signatures in the mammalian genome. , 2009, Human molecular genetics.

[88]  M. Martinka,et al.  Loss of SNF5 Expression Correlates with Poor Patient Survival in Melanoma , 2009, Clinical Cancer Research.

[89]  E. Segal,et al.  What controls nucleosome positions? , 2009, Trends in genetics : TIG.

[90]  R. Slany The molecular biology of mixed lineage leukemia , 2009, Haematologica.

[91]  Libing Song,et al.  Bmi-1, stem cells and cancer. , 2009, Acta biochimica et biophysica Sinica.

[92]  G. Veenstra,et al.  DNA methylation and methyl-CpG binding proteins: developmental requirements and function , 2009, Chromosoma.

[93]  B. Cairns,et al.  The biology of chromatin remodeling complexes. , 2009, Annual review of biochemistry.

[94]  D. Reisman,et al.  The SWI/SNF complex and cancer , 2009, Oncogene.

[95]  M. Stallcup,et al.  Minireview: protein arginine methylation of nonhistone proteins in transcriptional regulation. , 2009, Molecular endocrinology.

[96]  T. Nakayama,et al.  Critical role of the Polycomb and Trithorax complexes in the maintenance of CD4 T cell memory. , 2009, Seminars in immunology.

[97]  D. Trouche,et al.  The p400/Tip60 ratio is critical for colorectal cancer cell proliferation through DNA damage response pathways , 2009, Oncogene.

[98]  S. Varambally,et al.  Genomic Loss of microRNA-101 Leads to Overexpression of Histone Methyltransferase EZH2 in Cancer , 2008, Science.

[99]  T. Mikkelsen,et al.  Genome-scale DNA methylation maps of pluripotent and differentiated cells , 2008, Nature.

[100]  T. Bestor,et al.  The Colorful History of Active DNA Demethylation , 2008, Cell.

[101]  Scott A. Armstrong,et al.  MLL translocations, histone modifications and leukaemia stem-cell development , 2007, Nature Reviews Cancer.

[102]  C. Morrison,et al.  MicroRNA-29 family reverts aberrant methylation in lung cancer by targeting DNA methyltransferases 3A and 3B , 2007, Proceedings of the National Academy of Sciences.

[103]  C. Allis,et al.  Chromatin remodeling and cancer, Part II: ATP-dependent chromatin remodeling. , 2007, Trends in molecular medicine.

[104]  R. Schneider-Stock,et al.  Histone deacetylase inhibitors: signalling towards p21cip1/waf1. , 2007, The international journal of biochemistry & cell biology.

[105]  O. Sansom,et al.  Mechanisms of Disease: methyl-binding domain proteins as potential therapeutic targets in cancer , 2007, Nature Clinical Practice Oncology.

[106]  C. Caldas,et al.  Cancer genetics of epigenetic genes. , 2007, Human molecular genetics.

[107]  Sieger Leenstra,et al.  Novel somatic and germline mutations in cancer candidate genes in glioblastoma, melanoma, and pancreatic carcinoma. , 2007, Cancer research.

[108]  M. Esteller Cancer epigenomics: DNA methylomes and histone-modification maps , 2007, Nature Reviews Genetics.

[109]  H. Vogel,et al.  CHD5 Is a Tumor Suppressor at Human 1p36 , 2007, Cell.

[110]  O. Tawfik,et al.  Aberrant expression of SWI/SNF catalytic subunits BRG1/BRM is associated with tumor development and increased invasiveness in prostate cancers , 2007, The Prostate.

[111]  Peter A. Jones,et al.  Specific activation of microRNA-127 with downregulation of the proto-oncogene BCL6 by chromatin-modifying drugs in human cancer cells. , 2006, Cancer cell.

[112]  L. Aaltonen,et al.  A truncating mutation of HDAC2 in human cancers confers resistance to histone deacetylase inhibition , 2006, Nature Genetics.

[113]  S. Baylin,et al.  Epigenetic gene silencing in cancer – a mechanism for early oncogenic pathway addiction? , 2006, Nature Reviews Cancer.

[114]  C. Caldas,et al.  p300/CBP and cancer , 2004, Oncogene.

[115]  Stuart H. Orkin,et al.  The SWI/SNF complex — chromatin and cancer , 2004, Nature Reviews Cancer.

[116]  Xiang-Jiao Yang The diverse superfamily of lysine acetyltransferases and their roles in leukemia and other diseases. , 2004, Nucleic acids research.

[117]  S. Hirohashi,et al.  Mutation of the DNA methyltransferase (DNMT) 1 gene in human colorectal cancers. , 2003, Cancer letters.

[118]  Hongbing Shen,et al.  A novel polymorphism in human cytosine DNA-methyltransferase-3B promoter is associated with an increased risk of lung cancer. , 2002, Cancer research.

[119]  P. Marks,et al.  Histone deacetylases and cancer: causes and therapies , 2001, Nature Reviews Cancer.

[120]  C. Wijmenga,et al.  Genetic variation in ICF syndrome: Evidence for genetic heterogeneity , 2000, Human mutation.

[121]  T. Richmond,et al.  Crystal structure of the nucleosome core particle at 2.8 Å resolution , 1997, Nature.

[122]  G. Coetzee,et al.  5-Methylcytosine as an endogenous mutagen in the human LDL receptor and p53 genes. , 1990, Science.

[123]  J. Uhm IDH1 mutation is sufficient to establish the glioma hypermethylator phenotype , 2012 .

[124]  P. Laird,et al.  Genome-scale analysis of aberrant DNA methylation in colorectal cancer. , 2012, Genome Research.

[125]  S. Pradhan,et al.  Regulation of expression and activity of DNA (cytosine-5) methyltransferases in mammalian cells. , 2011, Progress in molecular biology and translational science.

[126]  H. Timmers,et al.  Histone lysine methylation and demethylation pathways in cancer. , 2011, Biochimica et biophysica acta.

[127]  Peter A. Jones,et al.  Epigenetics in cancer. , 2010, Carcinogenesis.

[128]  G. Pfeifer,et al.  Identification of driver and passenger DNA methylation in cancer by epigenomic analysis. , 2010, Advances in genetics.

[129]  M. Fabbri,et al.  Epigenetics and miRNAs in human cancer. , 2010, Advances in genetics.

[130]  J. Workman,et al.  Histone deacetylase inhibitors: anticancer compounds. , 2009, The international journal of biochemistry & cell biology.

[131]  Peter A. Jones,et al.  The putative tumor suppressor microRNA-101 modulates the cancer epigenome by repressing the polycomb group protein EZH2. , 2009, Cancer research.

[132]  S. Shankar,et al.  Histone deacetylase inhibitors: mechanisms and clinical significance in cancer: HDAC inhibitor-induced apoptosis. , 2008, Advances in experimental medicine and biology.

[133]  Yan Wu,et al.  Aberrant expression of deoxyribonucleic acid methyltransferases DNMT1, DNMT3A, and DNMT3B in women with endometriosis. , 2007, Fertility and sterility.