Mathematical Tools for Automation Systems II: Optimization, Estimation, Decision, and Control

This chapter is a continuation of the previous chapter, and deals with the mathematical tools and methods developed and used for system optimization, parameter and state estimation, decision making, and feedback control. Optimization of the system operation and performance is always the main goal of any design, where the performance characterization and evaluation varies from case to case. In human–automation systems the optimization problem involves (and must involve) the system’s point of view, the human’s point of view, and the nature’s point of view. Quality, productivity, energy consumption, reliability, safety, competence, human satisfaction, and impact on the environment must be considered in a holistic way for the optimum system design. The methods to be discussed here use the mathematical models presented in the previous chapter. Obviously, the more accurate the available system model is, the more pragmatic (realistic) the resulting estimators, decision rules and control algorithms are.

[1]  Christopher D. Wickens,et al.  A model for types and levels of human interaction with automation , 2000, IEEE Trans. Syst. Man Cybern. Part A.

[2]  Fei-Yue Wang,et al.  A coordination theory for intelligent machines , 1990, Autom..

[3]  Melanie Mitchell,et al.  An introduction to genetic algorithms , 1996 .

[4]  Gordon S. G. Beveridge,et al.  Optimization: theory and practice , 1970 .

[5]  G. N. Saridis,et al.  Analytic formulation of intelligent machines as neural nets , 1988, Proceedings IEEE International Symposium on Intelligent Control 1988.

[6]  Manfred Morari,et al.  Model predictive control: Theory and practice - A survey , 1989, Autom..

[7]  Henk B. Verbruggen,et al.  Artificial Intelligence in Industrial Decision Making, Control, and Automation , 1995 .

[8]  Visakan Kadirkamanathan,et al.  Functional Adaptive Control , 2001 .

[9]  Karl Johan Åström,et al.  Adaptive Control , 1989, Embedded Digital Control with Microcontrollers.

[10]  James S. Meditch,et al.  Stochastic Optimal Linear Estimation and Control , 1969 .

[11]  Katsuhiko Ogata,et al.  Modern Control Engineering , 1970 .

[12]  J. Richalet,et al.  Model predictive heuristic control: Applications to industrial processes , 1978, Autom..

[13]  Kim Fung Man,et al.  Genetic algorithms for control and signal processing , 1997, Proceedings of the IECON'97 23rd International Conference on Industrial Electronics, Control, and Instrumentation (Cat. No.97CH36066).

[14]  Goldberg,et al.  Genetic algorithms , 1993, Robust Control Systems with Genetic Algorithms.

[15]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[16]  G. Saridis Stochastic processes, estimation, and control : the entropy approach , 1995 .

[17]  Simon Haykin,et al.  Neural Networks: A Comprehensive Foundation , 1998 .

[18]  Visakan Kadirkamanathan,et al.  Functional Adaptive Control: An Intelligent Systems Approach , 2012 .

[19]  Frank L. Lewis,et al.  Applied Optimal Control and Estimation , 1992 .

[20]  David J. N. Limebeer,et al.  Linear Robust Control , 1994 .

[21]  Y. D. Landau,et al.  Adaptive control: The model reference approach , 1979, IEEE Transactions on Systems, Man, and Cybernetics.

[22]  Omid Omidvar,et al.  Neural Networks and Pattern Recognition , 1997 .

[23]  Huibert Kwakernaak,et al.  Robust control and H∞-optimization - Tutorial paper , 1993, Autom..

[24]  Robin De Keyser,et al.  A comparative study of self-adaptive long-range predictive control methods , 1985, Autom..

[25]  Chia-Chi Tsui,et al.  Robust Control System Design , 1996 .

[26]  Ian Postlethwaite,et al.  Multivariable Feedback Control: Analysis and Design , 1996 .

[27]  Spyros G. Tzafestas,et al.  Stochastic Large-Scale Engineering Systems , 1992 .

[28]  Frank L. Lewis,et al.  Optimal Control , 1986 .

[29]  James R. Leigh Applied Digital Control , 1985 .

[30]  Naresh K. Sinha,et al.  Modern Control Systems , 1981, IEEE Transactions on Systems, Man, and Cybernetics.

[31]  Chia-Chi Tsui,et al.  Robust Control System Design: Advanced State Space Techniques , 1996 .

[32]  Spyros G. Tzafestas Applied Control: Current Trends and Modern Methodologies , 1993 .

[33]  John Harris,et al.  An Introduction to Fuzzy Logic Applications , 2000 .