Objective weights with intuitionistic fuzzy entropy measures and computational experiment analysis

It is important to properly assess the weights of attributes when solving multi-attribute decision problems because variations in the weights often influence the rankings of the alternatives. In this paper, we propose an alternative objective weighting method to generate objective weights based on intuitionistic fuzzy (IF) entropy measures, which depend on the nature of a decision matrix in an intuitionistic fuzzy environment. Instead of the traditional fuzzy entropy measure, which is characterized by using the discriminating power to calculate the attribute weights, the proposed approach adopts the IF entropy measure, which emphasizes the credibility of the data. The IF entropy measure applied here is derived from a geometric interpretation of intuitionistic fuzzy sets and incorporates the concept of a ratio of distance measures. We implement four distance measures in the proposed approach and compare them in a computational experiment. The experimental results indicate that different IF entropy measures used in weighting methods can generate distinct objective attribute weights. In particular, when the number of attributes increases, the discrepancy between the IF entropy measures increases.

[1]  Krassimir T. Atanassov,et al.  Intuitionistic fuzzy sets , 1986 .

[2]  Zun-Quan Xia,et al.  Multicriteria fuzzy decision-making methods based on intuitionistic fuzzy sets , 2007, J. Comput. Syst. Sci..

[3]  Krassimir T. Atanassov,et al.  Intuitionistic Fuzzy Sets - Theory and Applications , 1999, Studies in Fuzziness and Soft Computing.

[4]  C. Hwang,et al.  Group Decision Making Under Multiple Criteria: Methods and Applications , 1986 .

[5]  Ching-Lai Hwang,et al.  Fuzzy Multiple Attribute Decision Making - Methods and Applications , 1992, Lecture Notes in Economics and Mathematical Systems.

[6]  Athar Kharal,et al.  Homeopathic drug selection using Intuitionistic Fuzzy Sets , 2009, Homeopathy.

[7]  Diyar Akay,et al.  A multi-criteria intuitionistic fuzzy group decision making for supplier selection with TOPSIS method , 2009, Expert Syst. Appl..

[8]  Miin-Shen Yang,et al.  Fuzzy entropy on intuitionistic fuzzy sets , 2006, Int. J. Intell. Syst..

[9]  Jin-Han Park,et al.  Correlation coefficient of interval-valued intuitionistic fuzzy sets and its application to multiple attribute group decision making problems , 2009, Math. Comput. Model..

[10]  Anna Pankowska,et al.  General IF-sets with triangular norms and their applications to group decision making , 2006, Inf. Sci..

[11]  Janusz Kacprzyk,et al.  Using intuitionistic fuzzy sets in group decision making , 2002 .

[12]  Settimo Termini,et al.  A Definition of a Nonprobabilistic Entropy in the Setting of Fuzzy Sets Theory , 1972, Inf. Control..

[13]  Ronald R. Yager,et al.  Intuitionistic fuzzy interpretations of multi-criteria multi-person and multi-measurement tool decision making , 2005, Int. J. Syst. Sci..

[14]  Wenyi Zeng,et al.  Relationship between similarity measure and entropy of interval valued fuzzy sets , 2006, Fuzzy Sets Syst..

[15]  Xiaohong Chen,et al.  Intuitionistic fuzzy Choquet integral operator for multi-criteria decision making , 2010, Expert Syst. Appl..

[16]  Solomon Tesfamariam,et al.  Environmental decision-making under uncertainty using intuitionistic fuzzy analytic hierarchy process (IF-AHP) , 2009 .

[17]  Wen-Liang Hung A Note on Entropy of Intuitionistic Fuzzy Sets , 2003, Int. J. Uncertain. Fuzziness Knowl. Based Syst..

[18]  A. Kaufman,et al.  Introduction to the Theory of Fuzzy Subsets. , 1977 .

[19]  Ping Wang,et al.  QoS-aware web services selection with intuitionistic fuzzy set under consumer's vague perception , 2009, Expert Syst. Appl..

[20]  Arnold Kaufmann,et al.  Fundamental theoretical elements , 1975 .

[21]  T. Saaty,et al.  The Analytic Hierarchy Process , 1985 .

[22]  Guiwu Wei,et al.  Some induced geometric aggregation operators with intuitionistic fuzzy information and their application to group decision making , 2010, Appl. Soft Comput..

[23]  Janusz Kacprzyk,et al.  A consensus‐reaching process under intuitionistic fuzzy preference relations , 2003, Int. J. Intell. Syst..

[24]  Jun Ye,et al.  Multicriteria fuzzy decision-making method based on a novel accuracy function under interval-valued intuitionistic fuzzy environment , 2009, Expert Syst. Appl..

[25]  Shu Liu,et al.  Fractional programming methodology for multi-attribute group decision-making using IFS , 2009, Appl. Soft Comput..

[26]  Huawen Liu,et al.  Multi-criteria decision-making methods based on intuitionistic fuzzy sets , 2007, Eur. J. Oper. Res..

[27]  Miin-Shen Yang,et al.  Fuzzy entropy on intuitionistic fuzzy sets: Research Articles , 2006 .

[28]  Deng-Feng Li,et al.  Multiattribute decision making models and methods using intuitionistic fuzzy sets , 2005, J. Comput. Syst. Sci..

[29]  Zeshui Xu,et al.  Generalized aggregation operators for intuitionistic fuzzy sets , 2010 .

[30]  Zeshui Xu,et al.  Dynamic intuitionistic fuzzy multi-attribute decision making , 2008, Int. J. Approx. Reason..

[31]  Deng-Feng Li,et al.  Extension of the LINMAP for multiattribute decision making under Atanassov’s intuitionistic fuzzy environment , 2008, Fuzzy Optim. Decis. Mak..

[32]  Zeshui Xu,et al.  Multi-person multi-attribute decision making models under intuitionistic fuzzy environment , 2007, Fuzzy Optim. Decis. Mak..

[33]  C. Hwang Multiple Objective Decision Making - Methods and Applications: A State-of-the-Art Survey , 1979 .

[34]  Ioannis K. Vlachos,et al.  Subsethood, entropy, and cardinality for interval-valued fuzzy sets - An algebraic derivation , 2007, Fuzzy Sets Syst..

[35]  Janusz Kacprzyk,et al.  Distances between intuitionistic fuzzy sets , 2000, Fuzzy Sets Syst..

[36]  Milan Zeleny,et al.  The Attribute-Dynamic Attitude Model Adam , 1976 .

[37]  Humberto Bustince,et al.  Entropy on intuitionistic fuzzy sets and on interval-valued fuzzy sets , 1996, Fuzzy Sets Syst..

[38]  W.-L. Gau,et al.  Vague sets , 1993, IEEE Trans. Syst. Man Cybern..

[39]  Zeshui Xu,et al.  Intuitionistic preference relations and their application in group decision making , 2007, Inf. Sci..

[40]  Jun Ye,et al.  Fuzzy decision-making method based on the weighted correlation coefficient under intuitionistic fuzzy environment , 2010, Eur. J. Oper. Res..

[41]  Janusz Kacprzyk,et al.  Entropy for intuitionistic fuzzy sets , 2001, Fuzzy Sets Syst..

[42]  Zeshui Xu,et al.  Some similarity measures of intuitionistic fuzzy sets and their applications to multiple attribute decision making , 2007, Fuzzy Optim. Decis. Mak..

[43]  Deng-Feng Li,et al.  TOPSIS-Based Nonlinear-Programming Methodology for Multiattribute Decision Making With Interval-Valued Intuitionistic Fuzzy Sets , 2010, IEEE Transactions on Fuzzy Systems.

[44]  Zeshui Xu,et al.  Choquet integrals of weighted intuitionistic fuzzy information , 2010, Inf. Sci..

[45]  Weiqiong Wang,et al.  Distance measure between intuitionistic fuzzy sets , 2005, Pattern Recognit. Lett..

[46]  Jian Ma,et al.  A subjective and objective integrated approach to determine attribute weights , 1999, Eur. J. Oper. Res..

[47]  Humberto Bustince,et al.  Vague sets are intuitionistic fuzzy sets , 1996, Fuzzy Sets Syst..