How to design magneto-based total analysis systems for biomedical applications.

This article reviews recent developments on magnetoresistive detection of magnetic beads or nanoparticles by nanoscale sized sensors. Sensors are analyzed from an experimental and a numerical point of view in respect to their capability to either localize the position of a single magnetic particle or to detect the number of particles in a certain range. Guidelines are shown up on how to extend single sensors to sensor arrays with very high spatial resolution and how to modify the sensor shape in order to provide long distance measurements. Further, sensors in biological lab-on-a-chip environments are discussed. The magnetic ratchet and a gravitation based microfluidic component are reviewed as important tools to position and, therefore, detect biological components in continuous-flow devices.

[1]  Positioning system for particles in microfluidic structures , 2009 .

[2]  A. Hütten,et al.  On the resolution limits of tunnel magnetoresistance sensors for particle detection , 2009 .

[3]  G. Gutiérrez,et al.  Dynamics of two interacting dipoles , 2008 .

[4]  Shan X. Wang,et al.  Advances in Giant Magnetoresistance Biosensors With Magnetic Nanoparticle Tags: Review and Outlook , 2008, IEEE Transactions on Magnetics.

[5]  Anthony PF Turner,et al.  Immunosensors: The next generation , 1997, Nature Biotechnology.

[6]  P. Enoksson,et al.  Effective magnetic moment of magnetic multicore nanoparticles , 2009 .

[7]  Claude Fermon,et al.  Toward a magnetoresistive chip cytometer: Integrated detection of magnetic beads flowing at cm/s velocities in microfluidic channels , 2009 .

[8]  R. Langer,et al.  Drug delivery and targeting. , 1998, Nature.

[9]  D. A. Dunnett Classical Electrodynamics , 2020, Nature.

[10]  Nicole Pamme,et al.  Magnetism and microfluidics. , 2006, Lab on a chip.

[11]  J. Vörös,et al.  Electrochemical Biosensors - Sensor Principles and Architectures , 2008 .

[12]  A. Hütten,et al.  A combined reaction-separation lab-on-a-chip device for low Péclet number applications , 2009 .

[13]  Claude Chappert,et al.  Study of the dynamic magnetic properties of soft CoFeB films , 2006 .

[14]  E. R. Nowak,et al.  1∕f noise in magnetic tunnel junctions with MgO tunnel barriers , 2006 .

[15]  Hao Zeng,et al.  Bio-functionalization of monodisperse magnetic nanoparticles and their use as biomolecular labels in a magnetic tunnel junction based sensor. , 2005, The journal of physical chemistry. B.

[16]  J. Schotter,et al.  Analysing a magnetic molecule detection system--computer simulation. , 2004, Journal of biotechnology.

[17]  Andreas Hütten,et al.  A hydrodynamic switch: Microfluidic separation system for magnetic beads , 2009 .

[18]  Martin A. M. Gijs,et al.  Magnetic bead handling on-chip: new opportunities for analytical applications , 2004 .

[19]  F. Marchesoni,et al.  Artificial Brownian motors: Controlling transport on the nanoscale , 2008, 0807.1283.

[20]  N. V. Peskov,et al.  Oxidation of metal nanoparticles: Experiment and model , 2007 .

[21]  L. Gouskov,et al.  Noise in Thin Films Metal-Oxide-Metal AlAl2O3Al , 1968 .

[22]  K. Warnke Finite-element modeling of the separation of magnetic microparticles in fluid , 2003 .

[23]  Sh. Kogan,et al.  Electronic noise and fluctuations in solids , 1996 .

[24]  Camelia Albon,et al.  Tunneling magnetoresistance sensors for high resolutive particle detection , 2009 .

[25]  K. Neuman,et al.  Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy , 2008, Nature Methods.

[26]  A. Hütten,et al.  Number sensitive detection and direct imaging of dipolar coupled magnetic nanoparticles by tunnel magnetoresistive sensors , 2009 .

[27]  Sensitive bondforce measurements of ligand-receptor pairs with magnetic beads. , 2005, Biosensors & bioelectronics.

[28]  G. Fonnum,et al.  Characterisation of Dynabeads® by magnetization measurements and Mössbauer spectroscopy , 2005 .

[29]  Robert J. Lipert,et al.  Model for detection of immobilized superparamagnetic nanosphere assay labels using giant magnetoresistive sensors , 2000 .

[30]  A. Hütten,et al.  Dynamic simulations of the dipolar driven demagnetization process of magnetic multi-core nanoparticles , 2010 .

[31]  Libchaber,et al.  Confined Brownian motion. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[32]  F. N. Hooge,et al.  1/f noise , 1976 .

[33]  Edmund R. Nowak,et al.  Electrical noise in hysteretic ferromagnet–insulator–ferromagnet tunnel junctions , 1999 .

[34]  A level set based approach for modeling oxidation processes of ligand stabilized metallic nanoparticles , 2010 .

[35]  A. Hütten,et al.  Magnetic ratchet for biotechnological applications , 2009 .

[36]  T. Rapoport,et al.  BiP Acts as a Molecular Ratchet during Posttranslational Transport of Prepro-α Factor across the ER Membrane , 1999, Cell.

[37]  Mark A. Hayes,et al.  Active Control of Dynamic Supraparticle Structures in Microchannels , 2001 .