On Time-Consistent Collective Choice with Heterogeneous Quasi- Hyperbolic Discounting

A general setup is considered where agents are characterised by quasi-hyperbolic discounting and by heterogeneous bias for the present and heterogenous discounting parameters. Consumptions are moreover subject to a standard feasibility constraint. A collective utility function is defined as a function of the intertemporal utilities of the selves of the different agents, the elementary unit being thus the self of a given period for a given agent. The analysis is further specialized to time-independent collective utility functions. Such a framework generating a tension between Pareto-optimality and time-consistency for the optimal allocations, two approaches are suggested in order to tackle this issue. The first one imposes restrictions on the collective utility function that ensure the timeconsistency of the optimal decisions. The second one builds from an a priori time-inconsistent collective utility function. The benevolent planner is then to be considered as a sequence of successive incarnations, any of these incarnations being endowed with its own objective. The associated optimal policy is the equilibrium of a game between the successive incarnations of the planner when the players follow Markovian strategies. The results obtained for both solution concepts are compared through an example that also shows how they can be recovered through a competitive equilibrium.

[1]  A. Rapoport,et al.  Discount rates inferred from decisions: an experimental study , 1987 .

[2]  Shaowei Ke,et al.  Social Discounting and Long-Run Discounting , 2017 .

[3]  David I. Laibson,et al.  Dynamic Choices of Hyperbolic Consumers , 2001 .

[4]  Luis Alcalá On the time consistency of collective preferences , 2016, 1607.02688.

[5]  R. A. Becker,et al.  Comparative Dynamics in Aggregate Models of Optimal Capital Accumulation , 1985 .

[6]  G. Loewenstein,et al.  Time Discounting and Time Preference: A Critical Review , 2002 .

[7]  Faruk Gul,et al.  SELF-CONTROL AND THE THEORY OF CONSUMPTION , 1999 .

[8]  Leeat Yariv,et al.  Collective Dynamic Choice: The Necessity of Time Inconsistency , 2014 .

[9]  David Laibson,et al.  Self-Control and Saving for Retirement , 1998 .

[10]  On Time-Consistent Policy Rules for Heterogeneous Discounting Programs , 2016 .

[11]  J. Haushofer,et al.  How soon is now? Evidence of present bias from convex time budget experiments , 2016, Experimental Economics.

[12]  G. Laroque,et al.  Discount rate heterogeneity among older households: a puzzle? , 2013, Journal of population economics.

[13]  M. Grignon An empirical investigation of heterogeneity in time preferences and smoking behaviors , 2009 .

[14]  C. Le Van,et al.  Existence of a competitive equilibrium in a one sector growth model with heterogeneous agents and irreversible investment , 2001 .

[15]  Peter H. M. P. Roelofsma,et al.  Anomalies in intertemporal choice , 1996 .

[16]  P. Samuelson A Note on Measurement of Utility , 1937 .

[17]  Richard J. Zeckhauser,et al.  Aggregation of Heterogeneous Time Preferences , 2005, Journal of Political Economy.

[18]  R. Thaler Some empirical evidence on dynamic inconsistency , 1981 .

[19]  R. Pollak,et al.  SECOND-BEST NATIONAL SAVING AND GAME-EQUILIBRIUM GROWTH , 1980 .

[20]  R. Becker Optimal Growth with Heterogeneous Agents and the Twisted Turnpike: An Example , 2011 .

[21]  T. Bewley,et al.  AN INTEGRATION OF EQUILIBRIUM THEORY AND TURNPIKE THEORY , 1982 .