The Role of Syntax in Vector Space Models of Compositional Semantics

Modelling the compositional process by which the meaning of an utterance arises from the meaning of its parts is a fundamental task of Natural Language Processing. In this paper we draw upon recent advances in the learning of vector space representations of sentential semantics and the transparent interface between syntax and semantics provided by Combinatory Categorial Grammar to introduce Combinatory Categorial Autoencoders. This model leverages the CCG combinatory operators to guide a non-linear transformation of meaning within a sentence. We use this model to learn high dimensional embeddings for sentences and evaluate them in a range of tasks, demonstrating that the incorporation of syntax allows a concise model to learn representations that are both effective and general.

[1]  G. Frege Über Sinn und Bedeutung , 1892 .

[2]  J. R. Firth,et al.  A Synopsis of Linguistic Theory, 1930-1955 , 1957 .

[3]  Ray Jackendoff,et al.  Semantic Interpretation in Generative Grammar , 1972 .

[4]  László Dezsö,et al.  Universal Grammar , 1981, Certainty in Action.

[5]  Anna Szabolcsi,et al.  Bound variables in syntax (Are there any , 1987 .

[6]  Jordan B. Pollack,et al.  Recursive Distributed Representations , 1990, Artif. Intell..

[7]  Naftali Tishby,et al.  Distributional Clustering of English Words , 1993, ACL.

[8]  F. J. Pelletier The Principle of Semantic Compositionality , 1994 .

[9]  Christoph Goller,et al.  Learning task-dependent distributed representations by backpropagation through structure , 1996, Proceedings of International Conference on Neural Networks (ICNN'96).

[10]  Hinrich Schütze,et al.  Automatic Word Sense Discrimination , 1998, Comput. Linguistics.

[11]  Dekang Lin,et al.  Automatic Identification of Non-compositional Phrases , 1999, ACL.

[12]  Claire Cardie,et al.  Annotating Expressions of Opinions and Emotions in Language , 2005, Lang. Resour. Evaluation.

[13]  Bo Pang,et al.  Seeing Stars: Exploiting Class Relationships for Sentiment Categorization with Respect to Rating Scales , 2005, ACL.

[14]  Yoshua Bengio,et al.  Greedy Layer-Wise Training of Deep Networks , 2006, NIPS.

[15]  Geoffrey E. Hinton,et al.  Reducing the Dimensionality of Data with Neural Networks , 2006, Science.

[16]  Yee Whye Teh,et al.  Unsupervised Discovery of Nonlinear Structure Using Contrastive Backpropagation , 2006, Cogn. Sci..

[17]  James R. Curran,et al.  Wide-Coverage Efficient Statistical Parsing with CCG and Log-Linear Models , 2007, Computational Linguistics.

[18]  Mark Steedman,et al.  CCGbank: A Corpus of CCG Derivations and Dependency Structures Extracted from the Penn Treebank , 2007, CL.

[19]  Johan Bos,et al.  Linguistically Motivated Large-Scale NLP with C&C and Boxer , 2007, ACL.

[20]  M. Kracht,et al.  Compositionality in Montague Grammar , 2008 .

[21]  Jason Weston,et al.  A unified architecture for natural language processing: deep neural networks with multitask learning , 2008, ICML '08.

[22]  Mirella Lapata,et al.  Vector-based Models of Semantic Composition , 2008, ACL.

[23]  Tejashri Inadarchand Jain,et al.  Recognizing Contextual Polarity in Phrase-Level Sentiment Analysis , 2010 .

[24]  Marco Baroni,et al.  Nouns are Vectors, Adjectives are Matrices: Representing Adjective-Noun Constructions in Semantic Space , 2010, EMNLP.

[25]  Mirella Lapata,et al.  Composition in Distributional Models of Semantics , 2010, Cogn. Sci..

[26]  Kentaro Inui,et al.  Dependency Tree-based Sentiment Classification using CRFs with Hidden Variables , 2010, NAACL.

[27]  Yoshua Bengio,et al.  Word Representations: A Simple and General Method for Semi-Supervised Learning , 2010, ACL.

[28]  Mehrnoosh Sadrzadeh,et al.  Experimental Support for a Categorical Compositional Distributional Model of Meaning , 2011, EMNLP.

[29]  M. Steedman,et al.  Combinatory Categorial Grammar , 2011 .

[30]  Jeffrey Pennington,et al.  Dynamic Pooling and Unfolding Recursive Autoencoders for Paraphrase Detection , 2011, NIPS.

[31]  Jeffrey Pennington,et al.  Semi-Supervised Recursive Autoencoders for Predicting Sentiment Distributions , 2011, EMNLP.

[32]  Johan Bos,et al.  Developing a large semantically annotated corpus , 2012, LREC.

[33]  Andrew Y. Ng,et al.  Semantic Compositionality through Recursive Matrix-Vector Spaces , 2012, EMNLP.

[34]  Mirella Lapata,et al.  A Comparison of Vector-based Representations for Semantic Composition , 2012, EMNLP.

[35]  Klaus-Robert Müller,et al.  Efficient BackProp , 2012, Neural Networks: Tricks of the Trade.

[36]  Andrew Y. Ng,et al.  Convolutional-Recursive Deep Learning for 3D Object Classification , 2012, NIPS.

[37]  Christopher D. Manning,et al.  Baselines and Bigrams: Simple, Good Sentiment and Topic Classification , 2012, ACL.

[38]  Mehrnoosh Sadrzadeh,et al.  Multi-Step Regression Learning for Compositional Distributional Semantics , 2013, IWCS.

[39]  Hinrich Schütze,et al.  Cutting Recursive Autoencoder Trees , 2013, ICLR.