pH buffering downgradient of permeable reactive barriers

[1]  A. Dahmke,et al.  CKW-Abbaupotenzial im Abstrom von Fe0-Reaktionswänden , 2005 .

[2]  C. Vogt,et al.  Schadstofffreisetzung und -transport in braunkohlehaltigen Sedimenten , 2004 .

[3]  A. Dahmke,et al.  Competing TCE and cis-DCE degradation kinetics by zero-valent iron-experimental results and numerical simulation. , 2003, Journal of contaminant hydrology.

[4]  A. Dahmke,et al.  Prognostizierte und tatsächliche Langzeitstabilität von Fe(0)-Reaktionswänden—Am Beispiel der Reaktionswand am Standort Rheine nach 5-jähriger Betriebszeit , 2003 .

[5]  A. Dahmke,et al.  Einsatz reaktiver Tracer zur Bewertung der Langzeitstabilität und Reaktivität von Fe(0)-Reaktionswänden , 2003 .

[6]  R. Gillham,et al.  An in situ study of the effect of nitrate on the reduction of trichloroethylene by granular iron. , 2003, Journal of contaminant hydrology.

[7]  Robert W. Puls,et al.  Capstone Report on the Application, Monitoring, and Performance of Permeable Reactive Barriers for Ground-Water Remediation: Volume 1: Performance Evaluations at Two Sites , 2003 .

[8]  W. P. Ball,et al.  Longevity of granular iron in groundwater treatment processes: solution composition effects on reduction of organohalides and nitroaromatic compounds. , 2003, Environmental science & technology.

[9]  P. Fenter,et al.  Orthoclase dissolution kinetics probed by in situ X-ray reflectivity: effects of temperature, pH, and crystal orientation , 2003 .

[10]  M. Schirmer,et al.  Sanierungsforschung in regional kontaminierten Aquiferen , 2002 .

[11]  M. Schirmer,et al.  Sanierungsforschung in regional kontaminierten Aquiferen (SAFIRA) – 2. Projektüberblick und Pilotanlage , 2002 .

[12]  David W. Blowes,et al.  Reactive transport modeling of an in situ reactive barrier for the treatment of hexavalent chromium and trichloroethylene in groundwater , 2001 .

[13]  Ralph Schöpke,et al.  Anwendung des Neutralisationspotenzials bei der Bilanzierung von Säure-Base-Reaktionen im Umfeld des Braunkohlebergbaues , 2001 .

[14]  Stephanie Fiorenza,et al.  Sequenced Reactive Barriers for Groundwater Remediation , 1999 .

[15]  G. Möller,et al.  Removal of Dissolved Heavy Metals from Acid Rock Drainage Using Iron Metal , 1999 .

[16]  F. Wisotzky Hydrogeochemische Reaktionen im Sicker- und Grundwasserbereich von Braunkohlentagebaukippen , 1996 .

[17]  Jerry M. Bigham,et al.  SCHWERTMANNITE AND THE CHEMICAL MODELING OF IRON IN ACID SULFATE WATERS , 1996 .

[18]  A. Blum,et al.  Chapter 7. FELDSPAR DISSOLUTION KINETICS , 1995 .

[19]  J. A. Davis,et al.  CHAPTER 5. SURFACE COMPLEXATION MODELING IN AQUEOUS GEOCHEMISTRY , 1990 .

[20]  E. Teller,et al.  ADSORPTION OF GASES IN MULTIMOLECULAR LAYERS , 1938 .

[21]  D. Blowes,et al.  9.05 – The Geochemistry of Acid Mine Drainage , 2003 .

[22]  G. Plumlee Sulfate minerals- Crystallography, geochemistry and environmental significance , 2001 .

[23]  D. Nordstrom,et al.  Iron and Aluminum Hydroxysulfates from Acid Sulfate Waters , 2000 .

[24]  W. R. Fischer,et al.  Redox: Fundamentals, Processes and Applications , 1999 .

[25]  D. L. Parkhurst,et al.  User's guide to PHREEQC (Version 2)-a computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations , 1999 .

[26]  A. Blum,et al.  Feldspar dissolution kinetics , 1995 .

[27]  S. Brantley,et al.  Chemical weathering rates of silicate minerals , 1995 .

[28]  J. A. Davis,et al.  Surface complexation modeling in aqueous geochemistry , 1990 .