pH buffering downgradient of permeable reactive barriers
暂无分享,去创建一个
A. Dahmke | R. Köber | F. Dethlefsen | M. Ebert | D. Schäfer | V. Plagentz
[1] A. Dahmke,et al. CKW-Abbaupotenzial im Abstrom von Fe0-Reaktionswänden , 2005 .
[2] C. Vogt,et al. Schadstofffreisetzung und -transport in braunkohlehaltigen Sedimenten , 2004 .
[3] A. Dahmke,et al. Competing TCE and cis-DCE degradation kinetics by zero-valent iron-experimental results and numerical simulation. , 2003, Journal of contaminant hydrology.
[4] A. Dahmke,et al. Prognostizierte und tatsächliche Langzeitstabilität von Fe(0)-Reaktionswänden—Am Beispiel der Reaktionswand am Standort Rheine nach 5-jähriger Betriebszeit , 2003 .
[5] A. Dahmke,et al. Einsatz reaktiver Tracer zur Bewertung der Langzeitstabilität und Reaktivität von Fe(0)-Reaktionswänden , 2003 .
[6] R. Gillham,et al. An in situ study of the effect of nitrate on the reduction of trichloroethylene by granular iron. , 2003, Journal of contaminant hydrology.
[7] Robert W. Puls,et al. Capstone Report on the Application, Monitoring, and Performance of Permeable Reactive Barriers for Ground-Water Remediation: Volume 1: Performance Evaluations at Two Sites , 2003 .
[8] W. P. Ball,et al. Longevity of granular iron in groundwater treatment processes: solution composition effects on reduction of organohalides and nitroaromatic compounds. , 2003, Environmental science & technology.
[9] P. Fenter,et al. Orthoclase dissolution kinetics probed by in situ X-ray reflectivity: effects of temperature, pH, and crystal orientation , 2003 .
[10] M. Schirmer,et al. Sanierungsforschung in regional kontaminierten Aquiferen , 2002 .
[11] M. Schirmer,et al. Sanierungsforschung in regional kontaminierten Aquiferen (SAFIRA) – 2. Projektüberblick und Pilotanlage , 2002 .
[12] David W. Blowes,et al. Reactive transport modeling of an in situ reactive barrier for the treatment of hexavalent chromium and trichloroethylene in groundwater , 2001 .
[13] Ralph Schöpke,et al. Anwendung des Neutralisationspotenzials bei der Bilanzierung von Säure-Base-Reaktionen im Umfeld des Braunkohlebergbaues , 2001 .
[14] Stephanie Fiorenza,et al. Sequenced Reactive Barriers for Groundwater Remediation , 1999 .
[15] G. Möller,et al. Removal of Dissolved Heavy Metals from Acid Rock Drainage Using Iron Metal , 1999 .
[16] F. Wisotzky. Hydrogeochemische Reaktionen im Sicker- und Grundwasserbereich von Braunkohlentagebaukippen , 1996 .
[17] Jerry M. Bigham,et al. SCHWERTMANNITE AND THE CHEMICAL MODELING OF IRON IN ACID SULFATE WATERS , 1996 .
[18] A. Blum,et al. Chapter 7. FELDSPAR DISSOLUTION KINETICS , 1995 .
[19] J. A. Davis,et al. CHAPTER 5. SURFACE COMPLEXATION MODELING IN AQUEOUS GEOCHEMISTRY , 1990 .
[20] E. Teller,et al. ADSORPTION OF GASES IN MULTIMOLECULAR LAYERS , 1938 .
[21] D. Blowes,et al. 9.05 – The Geochemistry of Acid Mine Drainage , 2003 .
[22] G. Plumlee. Sulfate minerals- Crystallography, geochemistry and environmental significance , 2001 .
[23] D. Nordstrom,et al. Iron and Aluminum Hydroxysulfates from Acid Sulfate Waters , 2000 .
[24] W. R. Fischer,et al. Redox: Fundamentals, Processes and Applications , 1999 .
[25] D. L. Parkhurst,et al. User's guide to PHREEQC (Version 2)-a computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations , 1999 .
[26] A. Blum,et al. Feldspar dissolution kinetics , 1995 .
[27] S. Brantley,et al. Chemical weathering rates of silicate minerals , 1995 .
[28] J. A. Davis,et al. Surface complexation modeling in aqueous geochemistry , 1990 .