A mathematical model for batch and continuous thickening of flocculated suspensions in vessels with varying cross-section

[1]  G. J. Kynch A theory of sedimentation , 1952 .

[2]  W. Talmage,et al.  Determining Thickener Unit Areas , 1955 .

[3]  A. Michaels,et al.  Settling Rates and Sediment Volumes of Flocculated Kaolin Suspensions , 1962 .

[4]  E. Wagner International Series of Numerical Mathematics , 1963 .

[5]  K. J. Scott Experimental Study of Continuous Thickening of a Flocculated Silica Slurry , 1968 .

[6]  A. I. Vol'pert,et al.  Cauchy's Problem for Degenerate Second Order Quasilinear Parabolic Equations , 1969 .

[7]  S. Kružkov FIRST ORDER QUASILINEAR EQUATIONS IN SEVERAL INDEPENDENT VARIABLES , 1970 .

[8]  S. Osher,et al.  Stable and entropy satisfying approximations for transonic flow calculations , 1980 .

[9]  W. Schneider,et al.  Application of the theory of kinematic waves to the centrifugation of suspensions , 1983 .

[10]  Frank M. Tiller,et al.  The theory of sediment volumes of compressible, particulate structures , 1984 .

[11]  Robert H. Davis,et al.  Sedimentation of noncolloidal particles at low Reynolds numbers , 1985 .

[12]  R. Jackson,et al.  The resolution of shocks and the effects of compressible sediments in transient settling , 1988, Journal of Fluid Mechanics.

[13]  Frank M. Tiller,et al.  Limiting operating conditions for continuous thickeners , 1988 .

[14]  Fernando Concha,et al.  On the construction of global weak solutions in the Kynch theory of sedimentation , 1988 .

[15]  Fernando Concha,et al.  A Critical Review of Thickener Design Methods , 1993 .

[16]  Kerry A. Landman,et al.  Solid/liquid separation of flocculated suspensions , 1994 .

[17]  F. M. Tiller,et al.  Try deep thickeners and clarifiers , 1995 .

[18]  P. Bénilan,et al.  Sur l'équation générale ut = a(., u, φ(., u)x)x + ν dans L1 : II. Le problème d'évolution , 1995 .

[19]  Albert Rushton,et al.  Solid-liquid filtration and separation technology , 1996 .

[20]  E. M. Tory,et al.  Sedimentation of Small Particles in a Viscous Fluid , 1996 .

[21]  Athanasios N. Papanicolaou,et al.  BATCH ANALYSIS OF SLURRIES IN ZONE SETTLING REGIME , 1997 .

[22]  Nonlinear Degenerate Parabolic Equations , 1997 .

[23]  Stefan Diehl Dynamic and Steady-State Behavior of Continuous Sedimentation , 1997, SIAM J. Appl. Math..

[24]  Frank Pacard,et al.  New insights in dynamic modeling of a secondary settler-I. Flux theory and steady-states analysis , 1997 .

[25]  C. Tien Solid-liquid filtration and separation technology. By A. Rushton, A. S. Ward, and R. G. Holdlich, VCH, Weinheim, Germany, 1996, 529 pp., DM268 , 1997 .

[26]  Frank Pacard,et al.  New insights in dynamic modeling of a secondary settler—II. Dynamical analysis , 1997 .

[27]  W. Wendland,et al.  Entropy boundary and jump conditions in the theory of sedimentation with compression , 1998 .

[28]  R. Bürger,et al.  Mathematical model and numerical simulation of the settling of flocculated suspensions , 1998 .

[29]  H. Schubert Zur Auslegung von Schwerkrafteindickern , 1998 .

[30]  R. Font,et al.  Analysis of the Variation of the Upper Discontinuity in Sedimentation Batch Test , 1998 .

[31]  W. Wendland,et al.  Existence, Uniqueness, and Stability of Generalized Solutions of an Initial-Boundary Value Problem for a Degenerating Quasilinear Parabolic Equation☆ , 1998 .

[32]  R. Bürger,et al.  Settling velocities of particulate systems: 11. Comparison of the phenomenological sedimentation–consolidation model with published experimental results , 1999 .

[33]  Steinar Evje,et al.  Viscous splitting approximation of mixed hyperbolic-parabolic convection-diffusion equations , 1999, Numerische Mathematik.

[34]  Holden,et al.  Operator Splitting Methods for Degenerate Convection-Diffusion Equations I: Convergence and Entropy Estimates , 1999 .

[35]  K. Karlsen,et al.  Degenerate Convection-Diffusion Equations and Implicit Monotone Difference Schemes , 1999 .

[36]  Raimund Bürger,et al.  Settling velocities of particulate systems: 9. Phenomenological theory of sedimentation processes: numerical simulation of the transient behaviour of flocculated suspensions in an ideal batch or continuous thickener , 1999 .

[37]  Raimund Bürger,et al.  Sedimentation and Thickening , 1999 .

[38]  E. Biscaia,et al.  Study on batch sedimentation simulation — establishment of constitutive equations , 1999 .

[39]  G. Gagneux,et al.  Solution forte entropique de lois scalaires hyperboliques-paraboliques dégénérées , 1999 .

[40]  J. Carrillo Entropy Solutions for Nonlinear Degenerate Problems , 1999 .

[41]  A. Volpert Generalized solutions of degenerate second-order quasilinear parabolic and elliptic equations , 2000, Advances in Differential Equations.

[42]  Steinar Evje,et al.  On Strongly Degenerate Convection–Diffusion Problems Modeling Sedimentation–Consolidation Processes , 2000 .

[43]  R. Natalini,et al.  Diffusive BGK approximations for nonlinear multidimensional parabolic equations , 2000 .

[44]  K. Karlsen,et al.  Numerical solution of reservoir flow models based on large time step operator splitting algorithms , 2000 .

[45]  Raimund Bürger,et al.  Applications of the phenomenological theory to several published experimental cases of sedimentation processes , 2000 .

[46]  Discrete sedimentation model for ideal suspensions , 2000 .

[47]  Raimund Bürger,et al.  On upper rarefaction waves in batch settling , 2000 .

[48]  Raimund Bürger,et al.  Model equations for gravitational sedimentation-consolidation processes , 2000 .

[49]  Steinar Evje,et al.  Monotone Difference Approximations Of BV Solutions To Degenerate Convection-Diffusion Equations , 2000, SIAM J. Numer. Anal..

[50]  R. Bürgera,et al.  Applications of the phenomenological theory to several published experimental cases of sedimentation processes , 2000 .

[51]  Nicola Verdone,et al.  Numerical modelling of sedimentation processes , 2000 .

[52]  N. Risebro,et al.  CONVERGENCE OF FINITE DIFFERENCE SCHEMES FOR VISCOUS AND INVISCID CONSERVATION LAWS WITH ROUGH COEFFICIENTS , 2001 .

[53]  Knut-Andreas Lie,et al.  Numerical methods for the simulation of the settling of flocculated suspensions , 2000, Chemical Engineering Journal.

[54]  Raimund Bürger,et al.  Phenomenological model of filtration processes: 1. Cake formation and expression , 2001 .

[55]  Raimund Bürger,et al.  A critical look at the kinematic‐wave theory for sedimentation–consolidation processes in closed vessels , 2001 .

[56]  Mario Ohlberger A posteriori error estimates for vertex centered finite volume approximations of convection-diffusion-reaction equations , 2001 .

[57]  Gui-Qiang G. Chen,et al.  Stability of Entropy Solutions to the Cauchy Problem for a Class of Nonlinear Hyperbolic-Parabolic Equations , 2001, SIAM J. Math. Anal..

[58]  Raimund Bürger,et al.  Settling velocities of particulate systems: 12. Batch centrifugation of flocculated suspensions , 2001 .

[59]  K. Karlsen,et al.  On some upwind difference schemes for the phenomenological sedimentation-consolidation model , 2001 .

[60]  Raimund Bürger,et al.  A Strongly Degenerate Convection-diffusion Problem Modeling Centrifugation of Flocculated Suspensions , 2001 .

[61]  Antonio Fasano,et al.  Filtration in Porous Media and Industrial Application , 2001 .

[62]  Mario Ohlberger,et al.  A note on the uniqueness of entropy solutions of nonlinear degenerate parabolic equations , 2002, Journal of Mathematical Analysis and Applications.

[63]  Corrado Mascia,et al.  Nonhomogeneous Dirichlet Problems for Degenerate Parabolic-Hyperbolic Equations , 2002 .

[64]  Thierry Gallouët,et al.  Convergence of a finite volume scheme for nonlinear degenerate parabolic equations , 2002, Numerische Mathematik.

[65]  N. Risebro,et al.  On the uniqueness and stability of entropy solutions of nonlinear degenerate parabolic equations with rough coefficients , 2003 .

[66]  E. Tadmor,et al.  Hyperbolic Problems: Theory, Numerics, Applications , 2003 .