Recent Advances in Transmission Electron Microscopy for Materials Science at the EMAT Lab of the University of Antwerp

The rapid progress in materials science that enables the design of materials down to the nanoscale also demands characterization techniques able to analyze the materials down to the same scale, such as transmission electron microscopy. As Belgium’s foremost electron microscopy group, among the largest in the world, EMAT is continuously contributing to the development of TEM techniques, such as high-resolution imaging, diffraction, electron tomography, and spectroscopies, with an emphasis on quantification and reproducibility, as well as employing TEM methodology at the highest level to solve real-world materials science problems. The lab’s recent contributions are presented here together with specific case studies in order to highlight the usefulness of TEM to the advancement of materials science.

[1]  Paul A. Midgley,et al.  Double conical beam-rocking system for measurement of integrated electron diffraction intensities , 1994 .

[2]  J. Verbeeck,et al.  Determining oxygen relaxations at an interface: A comparative study between transmission electron microscopy techniques. , 2017, Ultramicroscopy.

[3]  J. Verbeeck,et al.  Demonstration of a 2 × 2 programmable phase plate for electrons. , 2017, Ultramicroscopy.

[4]  P. Midgley,et al.  3D electron microscopy in the physical sciences: the development of Z-contrast and EFTEM tomography. , 2003, Ultramicroscopy.

[5]  J. Verbeeck,et al.  Atomic resolution mapping of phonon excitations in STEM-EELS experiments. , 2014, Ultramicroscopy.

[6]  F. Mompiou,et al.  Quantitative grain growth and rotation probed by in-situ TEM straining and orientation mapping in small grained Al thin films , 2015 .

[7]  S. Bals,et al.  Procedure to count atoms with trustworthy single-atom sensitivity , 2013 .

[8]  S. Bals,et al.  Three-dimensional Atomic Imaging of Colloidal Coreàshell Nanocrystals , 2022 .

[9]  J. Verbeeck,et al.  Locating light and heavy atomic column positions with picometer precision using ISTEM. , 2017, Ultramicroscopy.

[10]  T. Schmitz Fundamentals Of Powder Diffraction And Structural Characterization Of Materials , 2016 .

[11]  D. Schryvers,et al.  High resolution transmission electron microscopy characterization of fcc → 9R transformation in nanocrystalline palladium films due to hydriding , 2013 .

[12]  M. Hervieu,et al.  Coupled cation and charge ordering in the CaMn3O6 tunnel structure , 2006 .

[13]  G. Tendeloo,et al.  Three-dimensional atomic imaging of crystalline nanoparticles , 2011, Nature.

[14]  D. Schryvers,et al.  Low-temperature plasticity of olivine revisited with in situ TEM nanomechanical testing , 2016, Science Advances.

[15]  Bart Goris,et al.  Development of a fast electromagnetic beam blanker for compressed sensing in scanning transmission electron microscopy , 2015, 1509.06656.

[16]  E. Rauch,et al.  Automated crystal orientation and phase mapping in TEM , 2014 .

[17]  M. Stöger-Pollach,et al.  Optical properties and bandgaps from low loss EELS: pitfalls and solutions. , 2008, Micron.

[18]  S. Bals,et al.  Atomic scale dynamics of ultrasmall germanium clusters , 2012, Nature Communications.

[19]  J. Raskin,et al.  Effect of deposition rate on the microstructure of electron beam evaporated nanocrystalline palladium thin films , 2013 .

[20]  S Bals,et al.  Quantitative atomic resolution mapping using high-angle annular dark field scanning transmission electron microscopy. , 2009, Ultramicroscopy.

[21]  J. Verbeeck,et al.  Probing the symmetry of the potential of localized surface plasmon resonances with phase-shaped electron beams , 2016, Nature Communications.

[22]  S. Blundell Magnetism in Condensed Matter , 2001 .

[23]  Masashi Watanabe,et al.  Mapping surface plasmons at the nanometre scale with an electron beam , 2007 .

[24]  Z. Liao,et al.  Long‐Range Domain Structure and Symmetry Engineering by Interfacial Oxygen Octahedral Coupling at Heterostructure Interface , 2016 .

[25]  N. Shibata,et al.  Dynamics of annular bright field imaging in scanning transmission electron microscopy. , 2010, Ultramicroscopy.

[26]  O. Volkova,et al.  Bi(3n+1)Ti7Fe(3n-3)O(9n+11) Homologous Series: Slicing Perovskite Structure with Planar Interfaces Containing Anatase-like Chains. , 2016, Inorganic chemistry.

[27]  Naoya Shibata,et al.  Robust atomic resolution imaging of light elements using scanning transmission electron microscopy , 2009 .

[28]  Andrew M. Minor,et al.  Local and transient nanoscale strain mapping during in situ deformation , 2016 .

[29]  Jean-Pierre Raskin,et al.  Advanced TEM investigation of the plasticity mechanisms in nanocrystalline freestanding palladium films with nanoscale twins , 2012 .

[30]  P. Nellist,et al.  Rapid estimation of catalyst nanoparticle morphology and atomic-coordination by high-resolution Z-contrast electron microscopy. , 2014, Nano letters.

[31]  S Van Aert,et al.  Quantitative composition determination at the atomic level using model-based high-angle annular dark field scanning transmission electron microscopy. , 2014, Ultramicroscopy.

[32]  Stephan Uhlemann,et al.  A spherical-aberration-corrected 200 kV transmission electron microscope , 1998 .

[33]  M. Blackman On the Intensities of Electron Diffraction Rings , 1939 .

[34]  Ulrich Dahmen,et al.  Atomic-resolution imaging with a sub-50-pm electron probe. , 2009, Physical review letters.

[35]  O. L. Krivanek,et al.  Sub-ångstrom resolution using aberration corrected electron optics , 2002, Nature.

[36]  J. Tarascon,et al.  The Li3RuyNb1–yO4 (0 ≤ y ≤ 1) System: Structural Diversity and Li Insertion and Extraction Capabilities , 2017 .

[37]  D. Schryvers,et al.  Optimization of Automated Crystal Orientation Mapping in a TEM for Ni4Ti3 Precipitation in All-Round SMA , 2016, Shape Memory and Superelasticity.

[38]  S. Bals,et al.  Statistical estimation of atomic positions from exit wave reconstruction with a precision in the picometer range. , 2006, Physical review letters.

[39]  Erik J. Berg,et al.  Strong Oxygen Participation in the Redox Governing the Structural and Electrochemical Properties of Na-Rich Layered Oxide Na2IrO3 , 2016 .

[40]  M. Fivel,et al.  HRTEM investigation of dislocation/hydrogen interaction mechanisms in hydrided nanocrystalline palladium films , 2016 .

[41]  B. Barwick,et al.  Simultaneous observation of the quantization and the interference pattern of a plasmonic near-field , 2015, Nature Communications.

[42]  A. J. den Dekker,et al.  Advanced electron crystallography through model-based imaging , 2016, IUCrJ.

[43]  F. D. Abajo,et al.  Optical excitations in electron microscopy , 2009, 0903.1669.

[44]  Bandgap measurement of high refractive index materials by off-axis EELS. , 2016, Ultramicroscopy.

[45]  A. Abakumov,et al.  AVPO4F (A = Li, K): A 4 V Cathode Material for High-Power Rechargeable Batteries , 2016 .

[46]  D. Van Dyck,et al.  Maximum likelihood estimation of structure parameters from high resolution electron microscopy images. Part I: a theoretical framework. , 2005 .

[47]  S. Van Aert,et al.  Atom counting in HAADF STEM using a statistical model-based approach: methodology, possibilities, and inherent limitations. , 2013, Ultramicroscopy.

[48]  Sven Hovmöller,et al.  Three-dimensional electron diffraction as a complementary technique to powder X-ray diffraction for phase identification and structure solution of powders , 2015, IUCrJ.

[49]  A. Abakumov,et al.  Incommensurate modulation and luminescence in the $CaGd_{2(1-x)}Eu_{2x}(MoO_{4})_{4(1-y)}(WO)_{4y}$ ( $0\leq x\leq1$ , $0\leq y\leq1$ ) red phosphors , 2013 .

[50]  J. J. Geuchies,et al.  In situ study of the formation mechanism of two-dimensional superlattices from PbSe nanocrystals. , 2016, Nature materials.

[51]  Jan Sijbers,et al.  Quantitative 3D analysis of huge nanoparticle assemblies† †Electronic supplementary information (ESI) available.CCDC 1417516–1417520 contain the supplementary crystallographic data for this paper. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c5nr06962a Click h , 2015, Nanoscale.

[52]  J. Verbeeck,et al.  Statistical Experimental Design in Compressed Sensing Set-ups for Optical and Transmission Electron Microscopy , 2018 .

[53]  P. Nellist,et al.  Three-dimensional atomic models from a single projection using Z-contrast imaging: verification by electron tomography and opportunities. , 2017, Nanoscale.

[54]  P. Schattschneider,et al.  Cerenkov losses: a limit for bandgap determination and Kramers-Kronig analysis. , 2006, Micron.

[55]  M. Wevers,et al.  Multiscale investigation of quasi-brittle fracture characteristics in a 9Cr-1Mo ferritic-martensitic steel embrittled by liquid lead-bismuth under low cycle fatigue , 2016 .

[57]  Determination of the atomic width of an APB in ordered CoPt using quantified HAADF-STEM , 2015 .

[58]  S. Pennycook,et al.  Atom-by-atom structural and chemical analysis by annular dark-field electron microscopy , 2010, Nature.

[59]  R. Egerton Control of radiation damage in the TEM. , 2013, Ultramicroscopy.

[60]  S. Bals,et al.  Ligand-Induced Shape Transformation of PbSe Nanocrystals , 2017, Chemistry of materials : a publication of the American Chemical Society.

[61]  U. Kolb,et al.  Structure solution with automated electron diffraction tomography data: different instrumental approaches , 2011, Journal of microscopy.

[62]  Gustaaf Van Tendeloo,et al.  Three-dimensional elemental mapping at the atomic scale in bimetallic nanocrystals. , 2013, Nano letters.

[63]  E. Shevchenko,et al.  "Magnet-in-the-semiconductor" FePt-PbS and FePt-PbSe nanostructures: magnetic properties, charge transport, and magnetoresistance. , 2010, Journal of the American Chemical Society.

[64]  T. Altantzis,et al.  Co-Fe nanodumbbells: synthesis, structure, and magnetic properties. , 2014, Nano letters.

[65]  S. Bals,et al.  Three-dimensional valency mapping in ceria nanocrystals. , 2014, ACS nano.

[66]  A. Bos Parameter Estimation for Scientists and Engineers , 2007 .

[67]  L. Liz‐Marzán,et al.  Atomic-scale determination of surface facets in gold nanorods. , 2012, Nature materials.

[68]  K Ramesha,et al.  Origin of voltage decay in high-capacity layered oxide electrodes. , 2015, Nature materials.

[69]  O. Volkova,et al.  Crystal Structure, Defects, Magnetic and Dielectric Properties of the Layered Bi3n+1Ti7Fe3n-3O9n+11 Perovskite-Anatase Intergrowths. , 2017, Inorganic chemistry.

[70]  D. Schryvers,et al.  Electronically decoupled stacking fault tetrahedra embedded in Au(111) films , 2016, Nature Communications.

[71]  D. Schryvers,et al.  Direct Observation of Ferrielectricity at Ferroelastic Domain Boundaries in CaTiO3 by Electron Microscopy , 2012, Advanced materials.

[72]  Bert Freitag,et al.  Enhanced Detection Sensitivity with a New Windowless XEDS System for AEM Based on Silicon Drift Detector Technology , 2010, Microscopy Today.

[73]  J. Tarascon,et al.  Visualization of O-O peroxo-like dimers in high-capacity layered oxides for Li-ion batteries , 2015, Science.

[74]  M. G. Rozova,et al.  Tetrahedral Chain Order in the Sr2Fe2O5 Brownmillerite , 2008 .

[75]  J. Verbeeck,et al.  Controlled growth of hexagonal gold nanostructures during thermally induced self-assembling on Ge(001) surface , 2017, Scientific Reports.

[76]  S. Pennycook,et al.  Handbook of nanoscopy , 2012 .

[77]  L. Liz‐Marzán,et al.  Monitoring galvanic replacement through three-dimensional morphological and chemical mapping. , 2014, Nano letters.

[78]  P. Batson,et al.  Vibrational spectroscopy in the electron microscope , 2014, Nature.

[79]  A. Abakumov,et al.  Interface control by chemical and dimensional matching in an oxide heterostructure. , 2016, Nature chemistry.

[80]  Sven Hovmöller,et al.  Electron crystallography : electron microscopy and electron diffraction , 2011 .

[81]  Spectral field mapping in plasmonic nanostructures with nanometer resolution , 2018, Nature Communications.

[82]  V. Klechkovskaya Electron Diffraction Structure Analysis , 2006 .

[83]  S. Bals,et al.  Crystallographic shear structures as a route to anion-deficient perovskites. , 2006, Angewandte Chemie.

[84]  K. Haenen,et al.  Exploring possibilities of band gap measurement with off-axis EELS in TEM. , 2017, Ultramicroscopy.

[85]  Thickness Dependent Properties in Oxide Heterostructures Driven by Structurally Induced Metal–Oxygen Hybridization Variations , 2017, 1701.07930.

[86]  L. Liz‐Marzán,et al.  A New Method for Quantitative XEDS Tomography of Complex Heteronanostructures , 2016 .

[87]  X. Z. Li,et al.  GP-zones in Al–Zn–Mg alloys and their role in artificial aging , 2001 .

[88]  H. Tan,et al.  2D atomic mapping of oxidation states in transition metal oxides by scanning transmission electron microscopy and electron energy-loss spectroscopy. , 2011, Physical review letters.

[89]  P. Nellist,et al.  Unscrambling Mixed Elements using High Angle Annular Dark Field Scanning Transmission Electron Microscopy. , 2016, Physical review letters.

[90]  H. Rose,et al.  Conditions and reasons for incoherent imaging in STEM , 1996 .

[91]  L. Jones,et al.  Direct Observation of Ferroelectric Domain Walls in LiNbO3: Wall‐Meanders, Kinks, and Local Electric Charges , 2016 .

[92]  A. Kobler,et al.  Combination of in situ straining and ACOM TEM: a novel method for analysis of plastic deformation of nanocrystalline metals. , 2013, Ultramicroscopy.

[93]  A. Abakumov,et al.  Atomic structure of defects in anion-deficient perovskite-based ferrites with a crystallographic shear structure. , 2014, Inorganic chemistry.

[94]  M. Batuk,et al.  Complex Microstructure and Magnetism in Polymorphic CaFeSeO. , 2016, Inorganic chemistry.

[95]  D. Schryvers,et al.  Quantitative in-situ TEM nanotensile testing of single crystal Ni facilitated by a new sample preparation approach. , 2017, Micron.

[96]  J Sijbers,et al.  StatSTEM: An efficient approach for accurate and precise model-based quantification of atomic resolution electron microscopy images. , 2016, Ultramicroscopy.

[97]  Abakumov,et al.  Post-print version AVPO 4 F ( A = Li , K ) : A 4 V Cathode Material for High-Power Rechargeable Batteries , 2017 .

[98]  Artem M. Abakumov,et al.  Anion Ordering in Fluorinated La2CuO4 , 1999 .

[99]  A. Abakumov,et al.  Synergy between transmission electron microscopy and powder diffraction: application to modulated structures. , 2015, Acta crystallographica Section B, Structural science, crystal engineering and materials.

[100]  M. Schmidt,et al.  Layered-to-Tunnel Structure Transformation and Oxygen Redox Chemistry in LiRhO2 upon Li Extraction and Insertion. , 2016, Inorganic chemistry.

[101]  S. Ringer,et al.  Quantitative measurement for the microstructural parameters of nano-precipitates in Al-Mg-Si-Cu alloys , 2016 .

[102]  L. Liz‐Marzán,et al.  Mapping surface plasmons on a single metallic nanoparticle , 2007 .

[103]  M. Legros In situ mechanical TEM: Seeing and measuring under stress with electrons , 2014 .

[104]  M. Kociak,et al.  Modal decompositions of the local electromagnetic density of states and spatially resolved electron energy loss probability in terms of geometric modes , 2012 .

[105]  U. Kolb,et al.  Automated electron diffraction tomography – a new tool for nano crystal structure analysis , 2011 .

[106]  P. Nellist The Principles of STEM Imaging , 2011 .

[107]  A. Abakumov,et al.  Trapping of Oxygen Vacancies at Crystallographic Shear Planes in Acceptor-Doped Pb-Based Ferroelectrics. , 2015, Angewandte Chemie.

[108]  G. Pharr,et al.  Effects of focused ion beam milling on the compressive behavior of directionally solidified micropillars and the nanoindentation response of an electropolished surface , 2009 .

[109]  D. Schryvers,et al.  Review on TEM analysis of growth twins in nanocrystalline palladium thin films: Toward better understanding of twin‐related mechanisms in high stacking fault energy metals , 2014 .

[110]  D. Schryvers,et al.  In situ transmission electron microscopy of stress-induced martensite with focus on martensite twinning , 2008 .

[111]  Eiji Abe,et al.  Direct imaging of hydrogen-atom columns in a crystal by annular bright-field electron microscopy. , 2011, Nature materials.

[112]  G. Lorimer,et al.  The quantitative analysis of thin specimens , 1975 .

[113]  Kees Joost Batenburg,et al.  Electron tomography based on a total variation minimization reconstruction technique , 2012 .

[114]  K. Held,et al.  Controlled lateral anisotropy in correlated manganite heterostructures by interface-engineered oxygen octahedral coupling. , 2016, Nature materials.

[115]  Sara Bals,et al.  Highly Emissive Divalent-Ion-Doped Colloidal CsPb1–xMxBr3 Perovskite Nanocrystals through Cation Exchange , 2017, Journal of the American Chemical Society.

[116]  G. Tendeloo,et al.  Solving the Structure of Li Ion Battery Materials with Precession Electron Diffraction: Application to Li2CoPO4F , 2011 .

[117]  High precision measurements of atom column positions using model-based exit wave reconstruction , 2011 .

[118]  Valence EELS below the limit of inelastic delocalization using conical dark field EFTEM or Bessel beams. , 2017, Ultramicroscopy.

[119]  D. Williams,et al.  The quantitative analysis of thin specimens: a review of progress from the Cliff‐Lorimer to the new ζ‐factor methods , 2006, Journal of microscopy.

[120]  J. Sijbers,et al.  Measuring Lattice Strain in Three Dimensions through Electron Microscopy , 2015, Nano letters.

[121]  Approaching the limits of cationic and anionic electrochemical activity with the Li-rich layered rocksalt Li3IrO4 , 2017 .