Bright green electroluminescence from Tb3+ in silicon metal-oxide-semiconductor devices

Bright green electroluminescence with luminance up to 2800cd∕m2 is reported from indium-tin-oxide∕SiO2:Tb∕Si metal-oxide-semiconductor devices. The SiO2:Tb3+ gate oxide was prepared by thermal oxidation followed by Tb+ implantation. Electroluminescence and photoluminescence properties were studied with variations of the Tb3+ ion concentration and the annealing temperature. The optimized device shows a high external quantum efficiency of 16% and a luminous efficiency of 2.1lm∕W. The excitation processes of the strong green electroluminescence are attributed to the impact excitation of the Tb3+ luminescent centers by hot electrons and the subsequent crossrelaxation from D35 to D45 energy levels. Light-emitting devices with micrometer size fabricated by the standard metal-oxide-semiconductor technology are demonstrated.

[1]  Juan A. López-Villanueva,et al.  Analysis of the effects of constant‐current Fowler–Nordheim‐tunneling injection with charge trapping inside the potential barrier , 1991 .

[2]  Maria Miritello,et al.  Electroluminescence at 1.54 μm in Er-doped Si nanocluster-based devices , 2002 .

[3]  Robert A. Satten,et al.  Spectra and energy levels of rare earth ions in crystals , 1968 .

[4]  Takashi Mukai,et al.  GaN‐Based Light‐Emitting Diodes and Laser Diodes, and Their Recent Progress , 2001 .

[5]  M. Green,et al.  Efficient silicon light-emitting diodes , 2001, Nature.

[6]  Y. Ohki,et al.  Rare-earth-doped films prepared by plasma-enhanced chemical vapour deposition , 1997 .

[7]  Lars Rebohle,et al.  Efficient ultraviolet electroluminescence from a Gd-implanted silicon metal–oxide–semiconductor device , 2004 .

[8]  R. Mueller-Mach,et al.  Electroluminescence from CaS : TmF3 film prepared by radio frequency magnetron sputtering , 1998 .

[9]  R. Carius,et al.  Room-temperature photoluminescence from Tb ions implanted in SiO2 on Si , 1998 .

[10]  D. Arnold,et al.  Impact ionization, trap creation, degradation, and breakdown in silicon dioxide films on silicon , 1993 .

[11]  K. Sohn,et al.  Luminescence and decay behaviors of Tb-doped yttrium silicate , 2001 .

[12]  Soon-Gil Yoon,et al.  Improvement of discharge capacity of LiCoO2 thin-film cathodes deposited in trench structure by liquid-delivery metalorganic chemical vapor deposition , 2003 .

[13]  L. D. Negro,et al.  Optical gain in silicon nanocrystals , 2000, Nature.

[14]  Timothy R. Ginn,et al.  Modeling microbial processes in porous media , 2000 .

[15]  D. Graaf Chemistry, structure and properties of rare-earth containing Si-Al-O-N glasses , 2004 .

[16]  Lorenzo Pavesi,et al.  TOPICAL REVIEW: Will silicon be the photonic material of the third millenium? * , 2003 .

[17]  Lars Rebohle,et al.  Efficient Blue Light Emission from Silicon: The First Integrated Si-Based Optocoupler , 2001 .

[18]  A. Knights,et al.  Silicon Photonics: An Introduction , 2004 .

[19]  Maria Eloisa Castagna,et al.  High efficiency light emitting devices in silicon , 2003 .

[20]  D. C. Krupka,et al.  Hot‐Electron Impact Excitation of Tb3+ Luminescence in ZnS: Tb3+ Thin Films , 1972 .

[21]  K. D. Hirschman,et al.  Silicon-based visible light-emitting devices integrated into microelectronic circuits , 1996, Nature.

[22]  A. Polman,et al.  Erbium implanted thin film photonic materials , 1997 .

[23]  村尾 剛 G.H. Dieke: Spectra and Energy Levels of Rare Earth Ions in Crystals, Interscience Pub., New York, 1968, 401頁, 16×23.5cm, $13.95. , 1969 .

[24]  Yoshihiko Kanemitsu,et al.  Light emission from porous silicon and related materials , 1995 .