A Spectral Approach for the Design of Experiments: Design, Analysis and Algorithms

This paper proposes a new approach to construct high quality space-filling sample designs. First, we propose a novel technique to quantify the space-filling property and optimally trade-off uniformity and randomness in sample designs in arbitrary dimensions. Second, we connect the proposed metric (defined in the spatial domain) to the objective measure of the design performance (defined in the spectral domain). This connection serves as an analytic framework for evaluating the qualitative properties of space-filling designs in general. Using the theoretical insights provided by this spatial-spectral analysis, we derive the notion of optimal space-filling designs, which we refer to as space-filling spectral designs. Third, we propose an efficient estimator to evaluate the space-filling properties of sample designs in arbitrary dimensions and use it to develop an optimization framework to generate high quality space-filling designs. Finally, we carry out a detailed performance comparison on two different applications in 2 to 6 dimensions: a) image reconstruction and b) surrogate modeling on several benchmark optimization functions and an inertial confinement fusion (ICF) simulation code. We demonstrate that the propose spectral designs significantly outperform existing approaches especially in high dimensions.

[1]  Steven W. Haan,et al.  Three-dimensional HYDRA simulations of National Ignition Facility targets , 2001 .

[2]  Robert L. Cook,et al.  Stochastic sampling in computer graphics , 1988, TOGS.

[3]  Amitabh Varshney,et al.  PixelPie: maximal Poisson-disk sampling with rasterization , 2013, HPG '13.

[4]  Pramod K. Varshney,et al.  Stair blue noise sampling , 2016, ACM Trans. Graph..

[5]  Qian Sun,et al.  An Intrinsic Algorithm for Parallel Poisson Disk Sampling on Arbitrary Surfaces , 2013, IEEE Transactions on Visualization and Computer Graphics.

[6]  T. J. Mitchell,et al.  Exploratory designs for computational experiments , 1995 .

[7]  J. Yellott Spectral consequences of photoreceptor sampling in the rhesus retina. , 1983, Science.

[8]  Mohamed S. Ebeida,et al.  Efficient maximal poisson-disk sampling , 2011, ACM Trans. Graph..

[9]  I. Sloan,et al.  Low discrepancy sequences in high dimensions: How well are their projections distributed? , 2008 .

[10]  Mark A. Z. Dippé,et al.  Antialiasing through stochastic sampling , 1985, SIGGRAPH.

[11]  A. Sudjianto,et al.  An Efficient Algorithm for Constructing Optimal Design of Computer Experiments , 2005, DAC 2003.

[12]  Nagiza F. Samatova,et al.  Theory-Guided Data Science: A New Paradigm for Scientific Discovery from Data , 2016, IEEE Transactions on Knowledge and Data Engineering.

[13]  Li-Yi Wei,et al.  Parallel Poisson disk sampling , 2008, ACM Trans. Graph..

[14]  Russel E. Caflisch,et al.  Quasi-Random Sequences and Their Discrepancies , 1994, SIAM J. Sci. Comput..

[15]  Iftekhar A. Karimi,et al.  Design of computer experiments: A review , 2017, Comput. Chem. Eng..

[16]  Michael D. McKay,et al.  Latin hypercube sampling as a tool in uncertainty analysis of computer models , 1992, WSC '92.

[17]  I. Sobol On the distribution of points in a cube and the approximate evaluation of integrals , 1967 .

[18]  Xin-She Yang,et al.  A literature survey of benchmark functions for global optimisation problems , 2013, Int. J. Math. Model. Numer. Optimisation.

[19]  Dong-Ming Yan,et al.  Gap processing for adaptive maximal poisson-disk sampling , 2012, TOGS.

[20]  Greg Humphreys,et al.  A spatial data structure for fast Poisson-disk sample generation , 2006, ACM Trans. Graph..

[21]  Ares Lagae,et al.  A Comparison of Methods for Generating Poisson Disk Distributions , 2008, Comput. Graph. Forum.

[22]  Mohamed S. Ebeida,et al.  A Simple Algorithm for Maximal Poisson‐Disk Sampling in High Dimensions , 2012, Comput. Graph. Forum.

[23]  Pierre L'Ecuyer,et al.  Recent Advances in Randomized Quasi-Monte Carlo Methods , 2002 .

[24]  Li-Yi Wei Multi-class blue noise sampling , 2010, ACM Trans. Graph..

[25]  Oliver Deussen,et al.  Blue noise sampling with controlled aliasing , 2013, TOGS.

[26]  Markus Gross,et al.  Analysis and synthesis of point distributions based on pair correlation , 2012, ACM Trans. Graph..

[27]  Michael Balzer,et al.  Capacity-constrained point distributions: a variant of Lloyd's method , 2009, ACM Trans. Graph..

[28]  Li-Yi Wei,et al.  Point sampling with general noise spectrum , 2012, ACM Trans. Graph..

[29]  Art B Owen,et al.  A quasi-Monte Carlo Metropolis algorithm. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[30]  Boxin Tang Orthogonal Array-Based Latin Hypercubes , 1993 .

[31]  Pramod K. Varshney,et al.  Theoretical guarantees for poisson disk sampling using pair correlation function , 2016, 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[32]  Gurprit Singh,et al.  Fast tile-based adaptive sampling with user-specified Fourier spectra , 2014, ACM Trans. Graph..

[33]  Mathieu Desbrun,et al.  Blue noise through optimal transport , 2012, ACM Trans. Graph..

[34]  Jasper Snoek,et al.  Practical Bayesian Optimization of Machine Learning Algorithms , 2012, NIPS.

[35]  Peter Wonka,et al.  Adaptive maximal Poisson-disk sampling on surfaces , 2012, SIGGRAPH Asia Technical Briefs.

[36]  Robert Bridson,et al.  Fast Poisson disk sampling in arbitrary dimensions , 2007, SIGGRAPH '07.

[37]  Yoshua Bengio,et al.  Random Search for Hyper-Parameter Optimization , 2012, J. Mach. Learn. Res..

[38]  Jing Wang,et al.  A pipeline for surface reconstruction of 3-dimentional point cloud , 2014, 2014 International Conference on Audio, Language and Image Processing.

[39]  A. Owen Randomly Permuted (t,m,s)-Nets and (t, s)-Sequences , 1995 .

[40]  Art B. Owen,et al.  Monte Carlo and Quasi-Monte Carlo for Statistics , 2009 .

[41]  Zhenhua Li,et al.  A parallel algorithm for improving the maximal property of Poisson disk sampling in R2 and R3 , 2013, I3D '13.

[42]  Henry Cohn,et al.  The sphere packing problem in dimension 8The sphere packing problem in dimension 8 , 2016, 1603.04246.

[43]  Stephen J. Leary,et al.  Optimal orthogonal-array-based latin hypercubes , 2003 .

[44]  Oliver Deussen,et al.  Farthest-point optimized point sets with maximized minimum distance , 2011, HPG '11.

[45]  Heng Wang,et al.  Approximate Poisson disk sampling on mesh , 2013, Science China Information Sciences.

[46]  Rushil Anirudh,et al.  Poisson Disk Sampling on the Grassmannnian: Applications in Subspace Optimization , 2017, 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW).

[47]  V. Ostromoukhov,et al.  Fast hierarchical importance sampling with blue noise properties , 2004, SIGGRAPH 2004.

[48]  Mohamed S. Ebeida,et al.  k-d Darts , 2013, ACM Trans. Graph..

[49]  Zhenhua Li,et al.  A parallel algorithm for improving the maximal property of Poisson disk sampling , 2014, Comput. Aided Des..

[50]  Xin Li,et al.  Poisson disk sampling in geodesic metric for DEM simplification , 2013, Int. J. Appl. Earth Obs. Geoinformation.

[51]  Eugene Fiume,et al.  Hierarchical Poisson disk sampling distributions , 1992 .

[52]  V. Roshan Joseph,et al.  Space-filling designs for computer experiments: A review , 2016 .

[53]  R. Caflisch Monte Carlo and quasi-Monte Carlo methods , 1998, Acta Numerica.

[54]  Jianwei Guo,et al.  Efficient triangulation of Poisson-disk sampled point sets , 2014, The Visual Computer.

[55]  Natalie Packham Combining Latin Hypercube Sampling with Other Variance Reduction Techniques , 2012 .

[56]  Steve C. Maddock,et al.  Accurate multidimensional Poisson-disk sampling , 2009, TOGS.