The LKB1 complex-AMPK pathway: the tree that hides the forest

[1]  D. St Johnston,et al.  LKB1 and AMPK maintain epithelial cell polarity under energetic stress , 2013, The Journal of cell biology.

[2]  Gerd Walz,et al.  Primary cilia regulate mTORC1 activity and cell size through Lkb1 , 2010, Nature Cell Biology.

[3]  M. Pellegrini,et al.  AID-induced genotoxic stress promotes B cell differentiation in the germinal center via ATM and LKB1 signaling. , 2010, Molecular cell.

[4]  A. Ashworth,et al.  LKB1 Haploinsufficiency Cooperates With Kras to Promote Pancreatic Cancer Through Suppression of p21-Dependent Growth Arrest , 2010, Gastroenterology.

[5]  A. Prescott,et al.  New Roles for the LKB1-NUAK Pathway in Controlling Myosin Phosphatase Complexes and Cell Adhesion , 2010, Science Signaling.

[6]  G. Rutter,et al.  LKB1 deletion with the RIP2.Cre transgene modifies pancreatic β-cell morphology and enhances insulin secretion in vivo , 2010, American journal of physiology. Endocrinology and metabolism.

[7]  J. Labbé,et al.  Differential requirements for STRAD in LKB1-dependent functions in C. elegans , 2010, Development.

[8]  N. Navaratnam,et al.  Regulation of ploidy and senescence by the AMPK‐related kinase NUAK1 , 2010, The EMBO journal.

[9]  Maria Deak,et al.  Structure of the LKB1-STRAD-MO25 Complex Reveals an Allosteric Mechanism of Kinase Activation , 2009, Science.

[10]  A. Ashworth,et al.  Conditional deletion of the Lkb1 gene in the mouse mammary gland induces tumour formation , 2009, The Journal of pathology.

[11]  David K. Finlay,et al.  LKB1 is essential for the proliferation of T-cell progenitors and mature peripheral T cells , 2009, European journal of immunology.

[12]  M. Permutt,et al.  LKB1 regulates pancreatic beta cell size, polarity, and function. , 2009, Cell metabolism.

[13]  R. Shaw,et al.  The LKB1–AMPK pathway: metabolism and growth control in tumour suppression , 2009, Nature Reviews Cancer.

[14]  W. Hahn,et al.  SIK1 Couples LKB1 to p53-Dependent Anoikis and Suppresses Metastasis , 2009, Science Signaling.

[15]  P. Marignani,et al.  LKB1 catalytic activity contributes to estrogen receptor alpha signaling. , 2009, Molecular biology of the cell.

[16]  Y. Barral,et al.  Septins and the lateral compartmentalization of eukaryotic membranes. , 2009, Developmental cell.

[17]  L. Chin,et al.  Oncogenic B-RAF negatively regulates the tumor suppressor LKB1 to promote melanoma cell proliferation. , 2009, Molecular cell.

[18]  M. Schwartz,et al.  Regulation of LKB1/STRAD Localization and Function by E-Cadherin , 2009, Current Biology.

[19]  Fiona C. Denison,et al.  Characterization of an Alternative Splice Variant of LKB1* , 2009, Journal of Biological Chemistry.

[20]  D. Hardie,et al.  C-terminal Phosphorylation of LKB1 Is Not Required for Regulation of AMP-activated Protein Kinase, BRSK1, BRSK2, or Cell Cycle Arrest* , 2009, Journal of Biological Chemistry.

[21]  David M. A. Martin,et al.  A novel short splice variant of the tumour suppressor LKB1 is required for spermiogenesis. , 2008, The Biochemical journal.

[22]  J. Bertoglio,et al.  Rho-ROCK-Dependent Ezrin-Radixin-Moesin Phosphorylation Regulates Fas-Mediated Apoptosis in Jurkat Cells1 , 2008, The Journal of Immunology.

[23]  N. Ruderman,et al.  SIRT1 Modulation of the Acetylation Status, Cytosolic Localization, and Activity of LKB1 , 2008, Journal of Biological Chemistry.

[24]  T. Ochiya,et al.  Susceptibility of Snark‐deficient mice to azoxymethane‐induced colorectal tumorigenesis and the formation of aberrant crypt foci , 2008, Cancer science.

[25]  A. Ashworth,et al.  Lkb1 deficiency causes prostate neoplasia in the mouse. , 2008, Cancer research.

[26]  I. Macara,et al.  STRADalpha regulates LKB1 localization by blocking access to importin-alpha, and by association with Crm1 and exportin-7. , 2008, Molecular biology of the cell.

[27]  H. Tokumitsu,et al.  Activation of SAD kinase by Ca2+/calmodulin-dependent protein kinase kinase. , 2008, Biochemistry.

[28]  A. Marcus,et al.  The tumor suppressor LKB1 regulates lung cancer cell polarity by mediating cdc42 recruitment and activity. , 2008, Cancer research.

[29]  Kwok-Kin Wong,et al.  Loss of Lkb1 provokes highly invasive endometrial adenocarcinomas. , 2008, Cancer research.

[30]  Gerald C. Chu,et al.  Pancreatic Lkb1 Deletion Leads to Acinar Polarity Defects and Cystic Neoplasms , 2008, Molecular and Cellular Biology.

[31]  Y. Liao,et al.  Identification of a novel substrate for TNFα-induced kinase NUAK2 , 2008 .

[32]  M. Sanchez-Cespedes A role for LKB1 gene in human cancer beyond the Peutz–Jeghers syndrome , 2007, Oncogene.

[33]  P. Marignani,et al.  Novel splice isoforms of STRADα differentially affect LKB1 activity, complex assembly and subcellular localization. , 2007, Cancer biology & therapy.

[34]  H. Clevers,et al.  Suppression of Tubulin Polymerization by the LKB1-Microtubule-associated Protein/Microtubule Affinity-regulating Kinase Signaling* , 2007, Journal of Biological Chemistry.

[35]  David M Sabatini,et al.  Defining the role of mTOR in cancer. , 2007, Cancer cell.

[36]  D. St Johnston,et al.  LKB1 and AMPK maintain epithelial cell polarity under energetic stress , 2007, The Journal of cell biology.

[37]  J. Sanes,et al.  LKB1 and SAD Kinases Define a Pathway Required for the Polarization of Cortical Neurons , 2007, Cell.

[38]  Gordon B. Mills,et al.  The energy sensing LKB1–AMPK pathway regulates p27kip1 phosphorylation mediating the decision to enter autophagy or apoptosis , 2007, Nature Cell Biology.

[39]  L. Cantley,et al.  Regulation of epithelial tight junction assembly and disassembly by AMP-activated protein kinase , 2007, Proceedings of the National Academy of Sciences.

[40]  M. Caplan,et al.  AMP-activated protein kinase regulates the assembly of epithelial tight junctions , 2006, Proceedings of the National Academy of Sciences.

[41]  Michael D. Schneider,et al.  A pivotal role for endogenous TGF-β-activated kinase-1 in the LKB1/AMP-activated protein kinase energy-sensor pathway , 2006, Proceedings of the National Academy of Sciences.

[42]  S. Gruber,et al.  Frequency and Spectrum of Cancers in the Peutz-Jeghers Syndrome , 2006, Clinical Cancer Research.

[43]  R. DePinho,et al.  The Kinase LKB1 Mediates Glucose Homeostasis in Liver and Therapeutic Effects of Metformin , 2005, Science.

[44]  A. Prescott,et al.  14-3-3 cooperates with LKB1 to regulate the activity and localization of QSK and SIK , 2005, Journal of Cell Science.

[45]  V. Launonen,et al.  Mutations in the human LKB1/STK11 gene , 2005, Human mutation.

[46]  A. Means,et al.  The Ca2+/Calmodulin-dependent Protein Kinase Kinases Are AMP-activated Protein Kinase Kinases* , 2005, Journal of Biological Chemistry.

[47]  A. Reymond,et al.  LKB1 interacts with and phosphorylates PTEN: a functional link between two proteins involved in cancer predisposing syndromes. , 2005, Human molecular genetics.

[48]  Kei Sakamoto,et al.  Deficiency of LKB1 in skeletal muscle prevents AMPK activation and glucose uptake during contraction , 2005, The EMBO journal.

[49]  Hans Clevers,et al.  Functional analysis of Peutz-Jeghers mutations reveals that the LKB1 C-terminal region exerts a crucial role in regulating both the AMPK pathway and the cell polarity. , 2005, Human molecular genetics.

[50]  D. Alessi,et al.  Identification of the sucrose non‐fermenting related kinase SNRK, as a novel LKB1 substrate , 2005, FEBS letters.

[51]  J. Sanes,et al.  Mammalian SAD Kinases Are Required for Neuronal Polarization , 2005, Science.

[52]  D. M. Glover,et al.  Genome-wide survey of protein kinases required for cell cycle progression , 2004, Nature.

[53]  A. Prescott,et al.  Analysis of the LKB1-STRAD-MO25 complex , 2004, Journal of Cell Science.

[54]  J. Yates,et al.  The CREB Coactivator TORC2 Functions as a Calcium- and cAMP-Sensitive Coincidence Detector , 2004, Cell.

[55]  H. Esumi,et al.  Regulation of caspase-6 and FLIP by the AMPK family member ARK5 , 2004, Oncogene.

[56]  A. Suzuki,et al.  aPKC Acts Upstream of PAR-1b in Both the Establishment and Maintenance of Mammalian Epithelial Polarity , 2004, Current Biology.

[57]  A. Merg,et al.  Genetic conditions associated with intestinal juvenile polyps , 2004, American journal of medical genetics. Part C, Seminars in medical genetics.

[58]  H. Esumi,et al.  ARK5 Is a Tumor Invasion-Associated Factor Downstream of Akt Signaling , 2004, Molecular and Cellular Biology.

[59]  P. Brennwald,et al.  Mammalian PAR-1 determines epithelial lumen polarity by organizing the microtubule cytoskeleton , 2004, The Journal of cell biology.

[60]  Jérôme Boudeau,et al.  LKB1 is a master kinase that activates 13 kinases of the AMPK subfamily, including MARK/PAR‐1 , 2004, The EMBO journal.

[61]  Hans C Clevers,et al.  Complete Polarization of Single Intestinal Epithelial Cells upon Activation of LKB1 by STRAD , 2004, Cell.

[62]  Gerhard Christofori,et al.  Cell adhesion and signalling by cadherins and Ig-CAMs in cancer , 2004, Nature Reviews Cancer.

[63]  D. Hardie,et al.  CBS domains form energy-sensing modules whose binding of adenosine ligands is disrupted by disease mutations. , 2004, The Journal of clinical investigation.

[64]  B. Evers,et al.  Roles of Phosphatidylinositol 3′-Kinase and Mammalian Target of Rapamycin/p70 Ribosomal Protein S6 Kinase in K-Ras-Mediated Transformation of Intestinal Epithelial Cells , 2004, Cancer Research.

[65]  M. Rossel,et al.  Stability of the Peutz–Jeghers syndrome kinase LKB1 requires its binding to the molecular chaperones Hsp90/Cdc37 , 2003, Oncogene.

[66]  David Carling,et al.  Supplemental Data LKB 1 Is the Upstream Kinase in the AMP-Activated Protein Kinase Cascade , 2003 .

[67]  E. Mandelkow,et al.  MARKK, a Ste20‐like kinase, activates the polarity‐inducing kinase MARK/PAR‐1 , 2003, The EMBO journal.

[68]  Hans Clevers,et al.  MO25α/β interact with STRADα/β enhancing their ability to bind, activate and localize LKB1 in the cytoplasm , 2003 .

[69]  David Carling,et al.  Activation of yeast Snf1 and mammalian AMP-activated protein kinase by upstream kinases , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[70]  H C Clevers,et al.  Activation of the tumour suppressor kinase LKB1 by the STE20‐like pseudokinase STRAD , 2003, The EMBO journal.

[71]  N. Horike,et al.  Salt-inducible kinase-mediated regulation of steroidogenesis at the early stage of ACTH-stimulation , 2003, The Journal of Steroid Biochemistry and Molecular Biology.

[72]  M. Lawlor,et al.  Heat-shock protein 90 and Cdc37 interact with LKB1 and regulate its stability. , 2003, The Biochemical journal.

[73]  Daniel St Johnston,et al.  A role for Drosophila LKB1 in anterior–posterior axis formation and epithelial polarity , 2003, Nature.

[74]  C. Smythe,et al.  Ionizing radiation induces ataxia telangiectasia mutated kinase (ATM)-mediated phosphorylation of LKB1/STK11 at Thr-366. , 2002, The Biochemical journal.

[75]  Ronald A. DePinho,et al.  Loss of the Lkb1 tumour suppressor provokes intestinal polyposis but resistance to transformation , 2002, Nature.

[76]  Q. Deveraux,et al.  ILPIP, a Novel Anti-apoptotic Protein That Enhances XIAP-mediated Activation of JNK1 and Protection against Apoptosis* , 2002, The Journal of Biological Chemistry.

[77]  Z. Shao,et al.  The tumor suppressor gene LKB1 is associated with prognosis in human breast carcinoma. , 2002, Clinical cancer research : an official journal of the American Association for Cancer Research.

[78]  T. Mäkelä,et al.  Growth arrest by the LKB1 tumor suppressor: induction of p21(WAF1/CIP1). , 2002, Human molecular genetics.

[79]  G. Sapkota,et al.  Identification and characterization of four novel phosphorylation sites (Ser 31 , Ser 325 , Thr 336 and Thr 366 ) on LKB1/STK11, the protein kinase mutated in Peutz–Jeghers cancer syndrome , 2022 .

[80]  A. Ashworth,et al.  LIP1, a cytoplasmic protein functionally linked to the Peutz-Jeghers syndrome kinase LKB1. , 2001, Human molecular genetics.

[81]  F. Kanai,et al.  LKB1 Associates with Brg1 and Is Necessary for Brg1-induced Growth Arrest* , 2001, The Journal of Biological Chemistry.

[82]  K. Alitalo,et al.  Vascular Abnormalities and Deregulation of VEGF in Lkb1-Deficient Mice , 2001, Science.

[83]  L. Cantley,et al.  The Peutz-Jegher gene product LKB1 is a mediator of p53-dependent cell death. , 2001, Molecular cell.

[84]  G. Sapkota,et al.  Phosphorylation of the Protein Kinase Mutated in Peutz-Jeghers Cancer Syndrome, LKB1/STK11, at Ser431 by p90RSK and cAMP-dependent Protein Kinase, but Not Its Farnesylation at Cys433, Is Essential for LKB1 to Suppress Cell Growth* , 2001, The Journal of Biological Chemistry.

[85]  G. Thomas,et al.  Peutz-Jeghers families unlinked toSTK11/LKB1 gene mutations are highly predisposed to primitive biliary adenocarcinoma , 2001, Journal of medical genetics.

[86]  S. Goodman,et al.  Very high risk of cancer in familial Peutz-Jeghers syndrome. , 2000, Gastroenterology.

[87]  R. Poulsom,et al.  In situ analysis of LKB1/STK11 mRNA expression in human normal tissues and tumours , 2000, The Journal of pathology.

[88]  M. Uhler,et al.  LKB1, a novel serine/threonine protein kinase and potential tumour suppressor, is phosphorylated by cAMP-dependent protein kinase (PKA) and prenylated in vivo. , 2000, The Biochemical journal.

[89]  J. Nezu,et al.  Loss of cytoplasmic retention ability of mutant LKB1 found in Peutz-Jeghers syndrome patients. , 1999, Biochemical and biophysical research communications.

[90]  T. Mäkelä,et al.  Growth suppression by Lkb1 is mediated by a G(1) cell cycle arrest. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[91]  A. Ashworth,et al.  The mouse Peutz-Jeghers syndrome gene Lkb1 encodes a nuclear protein kinase. , 1999, Human molecular genetics.

[92]  A. Hemminki The molecular basis and clinical aspects of Peutz-Jeghers syndrome , 1999, Cellular and Molecular Life Sciences CMLS.

[93]  Gerhard Christofori,et al.  A causal role for E-cadherin in the transition from adenoma to carcinoma , 1998, Nature.

[94]  M. Stratton,et al.  A serine/threonine kinase gene defective in Peutz–Jeghers syndrome , 1998, Nature.

[95]  J. Maller,et al.  Cloning and Characterization of a Novel Serine/Threonine Protein Kinase Expressed in Early Xenopus Embryos* , 1996, The Journal of Biological Chemistry.

[96]  P. Fisher,et al.  Cell cycle arrest. , 1995, Science.

[97]  D. Morton,et al.  Identification of genes required for cytoplasmic localization in early C. elegans embryos , 1988, Cell.

[98]  David K. Finlay,et al.  LKB 1 is essential for the proliferation of T-cell progenitors and mature peripheral T cells , 2009 .

[99]  E. Sahin,et al.  LKB1 deficiency sensitizes mice to carcinogen-induced tumorigenesis. , 2008, Cancer research.

[100]  Y. Liao,et al.  Identification of a novel substrate for TNFalpha-induced kinase NUAK2. , 2008, Biochemical and biophysical research communications.

[101]  Alessandro Stella,et al.  An LKB1 AT-AC intron mutation causes Peutz-Jeghers syndrome via splicing at noncanonical cryptic splice sites , 2005, Nature Structural &Molecular Biology.

[102]  H. S. Kim,et al.  Genetic analysis of the LKB1/STK11 gene in hepatocellular carcinomas. , 2004, European journal of cancer.

[103]  Hans C Clevers,et al.  MO25alpha/beta interact with STRADalpha/beta enhancing their ability to bind, activate and localize LKB1 in the cytoplasm. , 2003, The EMBO journal.

[104]  T. Mäkelä,et al.  Growth arrest by the LKB 1 tumor suppressor : induction of p 21 WAF 1 / CIP 1 , 2002 .

[105]  J. Nezu,et al.  Peutz-Jeghers syndrome is caused by mutations in a novel serine threonine kinase. , 1998, Nature genetics.