Quantum-Dot Infrared Photodetectors

We present a study of a series of n-i-n InAs quantum-dot infrared photodetectors (QDIPs) with unintentionally doped active regions. Different quantum-dot capping layer materials (GaAs, InGaAs, and AlGaAs) are utilized to tune the operating wavelength and modify the QDIP performance. Normal-incidence operation with high detectivity in the mid (3-5 ) and long (8-12 ) wavelength regimes and the potential for multicolor operation is demonstrated.

[1]  J. Brault,et al.  Strong normal-incidence infrared absorption in self-organized InAs/InAlAs quantum dots grown on InP(001) , 1999 .

[2]  N. Kobayashi,et al.  Re-entrant behavior of 2D to 3D morphology change and 3D island lateral size equalization via mass exchange in Stranski—Krastanow growth: InAs on GaAs(001) , 1997 .

[3]  Anupam Madhukar,et al.  Tailoring mid- and long-wavelength dual response of InAs quantum-dot infrared photodetectors using InxGa1−xAs capping layers , 2002 .

[4]  Sanjay Krishna,et al.  Demonstration of a 320×256 two-color focal plane array using InAs/InGaAs quantum dots in well detectors , 2005 .

[5]  P. Bhattacharya,et al.  Observation of phonon bottleneck in quantum dot electronic relaxation. , 2001, Physical review letters.

[6]  Marion B. Reine,et al.  HgCdTe photodiodes for IR detection: a review , 2001, SPIE OPTO.

[7]  Jamie D. Phillips,et al.  Evaluation of the fundamental properties of quantum dot infrared detectors , 2002 .

[8]  Elias Towe,et al.  NORMAL-INCIDENCE INTERSUBBAND (IN, GA)AS/GAAS QUANTUM DOT INFRARED PHOTODETECTORS , 1998 .

[9]  Joe C. Campbell,et al.  Inas quantum dot infrared photodetectors with In0.15Ga0.85As strain-relief cap layers , 2002 .

[10]  Hadis Morkoç,et al.  Optical investigation of highly strained InGaAs‐GaAs multiple quantum wells , 1987 .

[11]  Sanjay Krishna,et al.  High-detectivity, normal-incidence, mid-infrared (λ∼4 μm)InAs/GaAs quantum-dot detector operating at 150 K , 2001 .

[12]  Vaidya Nathan,et al.  HgCdTe/Si materials for long wavelength infrared detectors , 2004 .

[13]  Joe C. Campbell,et al.  Normal incidence InAs/AlxGa1−xAs quantum dot infrared photodetectors with undoped active region , 2001 .

[14]  Michel Gendry,et al.  Quantum dot infrared photodetectors in new material systems , 2000 .

[15]  Shih-Yen Lin,et al.  High-performance InAs/GaAs quantum-dot infrared photodetectors with a single-sided Al0.3Ga0.7As blocking layer , 2001 .

[16]  B. F. Levine,et al.  Quantum‐well infrared photodetectors , 1993 .

[17]  Elias Towe,et al.  Photovoltaic quantum-dot infrared detectors , 2000 .

[18]  Ronald A. Ballingall Review of infrared focal plane arrays , 1990, Other Conferences.

[19]  Joe C. Campbell,et al.  Normal-incidence InAs self-assembled quantum-dot infrared photodetectors with a high detectivity , 2002 .

[20]  Stephen W. Kennerly,et al.  Comparison of HgCdTe and quantum-well infrared photodetector dual-band focal plane arrays , 2003 .

[21]  Anupam Madhukar,et al.  Normal-incidence voltage-tunable middle- and long-wavelength infrared photoresponse in self-assembled InAs quantum dots , 2002 .

[22]  Gerhard Abstreiter,et al.  Normal-incident intersubband photocurrent spectroscopy on InAs/GaAs quantum dots , 1999 .

[23]  Hsien-Shun Wu,et al.  Low dark current quantum-dot infrared photodetectors with an AlGaAs current blocking layer , 2001 .

[24]  Anupam Madhukar,et al.  Punctuated island growth: An approach to examination and control of quantum dot density, size, and shape evolution , 1999 .

[25]  A. Madhukar,et al.  Intraband-transition-induced dipoles in self-assembled InAs/GaAs(001) quantum dots , 2002 .

[26]  R. Stephenson A and V , 1962, The British journal of ophthalmology.

[27]  A. Madhukar,et al.  Tailoring detection bands of InAs quantum-dot infrared photodetectors using InxGa1−xAs strain-relieving quantum wells , 2001 .

[28]  Sheng S. Li,et al.  In0.6Ga0.4As/GaAs quantum-dot infrared photodetector with operating temperature up to 260 K , 2003 .

[29]  Antoni Rogalski,et al.  Optical detectors for focal plane arrays , 2004 .

[30]  Victor Ryzhii,et al.  The theory of quantum-dot infrared phototransistors , 1996 .

[31]  A. Madhukar,et al.  Optical and Photocurrent Spectroscopy Studies of Inter- and Intra-Band Transitions in Size-Tailored InAs/GaAs Quantum Dots , 2001 .

[32]  Joe C. Campbell,et al.  Noise and photoconductive gain in InAs quantum-dot infrared photodetectors , 2003 .

[33]  Joe C. Campbell,et al.  High detectivity InAs quantum dot infrared photodetectors , 2004 .

[34]  Jamie D. Phillips,et al.  Self-assembled InAs-GaAs quantum-dot intersubband detectors , 1999 .

[35]  S.B. Rafol,et al.  High-temperature operation of InAs-GaAs quantum-dot infrared photodetectors with large responsivity and detectivity , 2004, IEEE Photonics Technology Letters.

[36]  Anupam Madhukar,et al.  Realization of optically active strained InAs island quantum boxes on GaAs(100) via molecular beam epitaxy and the role of island induced strain fields , 1995 .

[37]  Victor Ryzhii,et al.  Physical model and analysis of quantum dot infrared photodetectors with blocking layer , 2001 .

[38]  M. Razeghi,et al.  Noise performance of InGaAs-InP quantum-well infrared photodetectors , 1998 .

[39]  M. Segev,et al.  Mid-infrared photoconductivity in InAs quantum dots , 1997 .

[40]  Gustaaf Borghs,et al.  Strain effects and band offsets in GaAs/InGaAs strained layered quantum structures , 1989 .

[41]  Paul D. LeVan,et al.  MWIR and LWIR megapixel QWIP focal plane arrays , 2004, SPIE Optics + Photonics.

[42]  Andreas Stintz,et al.  Three-color (λp1∼3.8 μm, λp2∼8.5 μm, and λp3∼23.2 μm) InAs/InGaAs quantum-dots-in-a-well detector , 2003 .

[43]  Sanjay Krishna,et al.  Normal-incidence, high-temperature, mid-infrared, InAs-GaAs vertical quantum-dot infrared photodetector , 2001 .

[44]  Anupam Madhukar,et al.  Intraband and interband photocurrent spectroscopy and induced dipole moments of InAs/GaAs(001) quantum dots in n–i–n photodetector structures , 2002 .