Camera‐augmented mobile C‐arm (CamC): A feasibility study of augmented reality imaging in the operating room

In orthopaedic trauma surgery, image‐guided procedures are mostly based on fluoroscopy. The reduction of radiation exposure is an important goal. The purpose of this work was to investigate the impact of a camera‐augmented mobile C‐arm (CamC) on radiation exposure and the surgical workflow during a first clinical trial.

[1]  Lejing Wang,et al.  Workflow Based Assessment of the Camera Augmented Mobile Carm System , 2008 .

[2]  Simon Weidert,et al.  Augmented Reality for Radiation Awareness. , 2015, ISMAR 2015.

[3]  M. A. Hafez,et al.  Radiation exposure to the hands of orthopaedic surgeons: are we underestimating the risk? , 2005, Archives of Orthopaedic and Trauma Surgery.

[4]  Lejing Wang,et al.  Parallax-free intra-operative X-ray image stitching , 2010, Medical Image Anal..

[5]  Stefan Weber,et al.  Evaluation of a portable image overlay projector for the visualisation of surgical navigation data: phantom studies , 2012, International Journal of Computer Assisted Radiology and Surgery.

[6]  Zhijian Song,et al.  Multi-mode navigation in image-guided neurosurgery using a wireless tablet PC , 2014, Australasian physical & engineering sciences in medicine.

[7]  Klaus Radermacher,et al.  Integrating medical devices in the operating room using service-oriented architectures , 2012, Biomedizinische Technik. Biomedical engineering.

[8]  Lejing Wang,et al.  Novel techniques for integrating video augmented X-ray imaging into orthopedic and trauma surgery , 2012 .

[9]  Weiwei Deng,et al.  Easy-to-Use Augmented Reality Neuronavigation Using a Wireless Tablet PC , 2013, Stereotactic and Functional Neurosurgery.

[10]  Ekkehard Euler,et al.  CAMC (camera augmented mobile C-arm)-first clinical application in a cadaver study , 2006 .

[11]  Simon Weidert,et al.  [POSTER] Augmented Reality for Radiation Awareness , 2015, 2015 IEEE International Symposium on Mixed and Augmented Reality.

[12]  Ekkehard Euler,et al.  Visual Servoing for Intraoperative Positioning and Repositioning of Mobile C-arms , 2006, MICCAI.

[13]  P. Robertson,et al.  Radiation Exposure During Fluoroscopically Assisted Pedicle Screw Insertion in the Lumbar Spine , 2000, Spine.

[14]  Utku Kandemir,et al.  Reduction of Radiation Exposure From C-Arm Fluoroscopy During Orthopaedic Trauma Operations With Introduction of Real-Time Dosimetry , 2016, Journal of orthopaedic trauma.

[15]  Lejing Wang,et al.  Multi-Modal Intra-Operative Navigation During Distal Locking of Intramedullary Nails , 2015, IEEE Transactions on Medical Imaging.

[16]  P M Rommens,et al.  Radiation exposure to the hands and the thyroid of the surgeon during intramedullary nailing. , 1998, Injury.

[17]  Michael Kraus,et al.  Strahlendosis im OP – ein Vergleich computerassistierter Verfahren , 2003, Der Unfallchirurg.

[18]  Lejing Wang,et al.  Long Bone X-Ray Image Stitching Using Camera Augmented Mobile C-Arm , 2008, MICCAI.

[19]  Nassir Navab,et al.  Supervised classification for customized intraoperative augmented reality visualization , 2012, 2012 IEEE International Symposium on Mixed and Augmented Reality (ISMAR).

[20]  Meir Liebergall,et al.  Challenges of technology integration and computer-assisted surgery. , 2009, The Journal of bone and joint surgery. American volume.

[21]  Lejing Wang,et al.  Accurate pose estimation using single marker single camera calibration system , 2013, Medical Imaging.

[22]  Nassir Navab,et al.  Interventions under Video-Augmented X-Ray Guidance: Application to Needle Placement , 2000, MICCAI.

[23]  Lejing Wang,et al.  First Animal Cadaver Study for Interlocking of Intramedullary Nails under Camera Augmented Mobile C-arm , 2010, IPCAI.

[24]  P. Jannin,et al.  Assessment of Image-Guided Interventions , 2008 .

[25]  Lejing Wang,et al.  Intra-op Measurement of the Mechanical Axis Deviation: An Evaluation Study on 19 Human Cadaver Legs , 2012, MICCAI.

[26]  C Krettek,et al.  Novel Computer-Assisted Fluoroscopy System for Intraoperative Guidance: Feasibility Study for Distal Locking of Femoral Nails , 2001, Journal of orthopaedic trauma.

[27]  R. Richards,et al.  Image intensifier position for hand and wrist fractures. , 2000, Injury.

[28]  Michael Fuchs,et al.  Strahlenschutz im Operationssaal , 1999, Operative Orthopädie und Traumatologie.

[29]  Lejing Wang,et al.  Camera Augmented Mobile CArm Towards Real Patient Study , 2009 .

[30]  Amy Berrington de González,et al.  Risk of cancer from diagnostic X-rays: estimates for the UK and 14 other countries , 2004, The Lancet.

[31]  Lejing Wang,et al.  An augmented reality C-arm for intraoperative assessment of the mechanical axis: a preclinical study , 2016, International Journal of Computer Assisted Radiology and Surgery.

[32]  Ekkehard Euler,et al.  Interactive Guidance System for C-Arm Repositioning Without Radiation , 2007, Bildverarbeitung für die Medizin.

[33]  Nassir Navab,et al.  Camera Augmented Mobile C-Arm (CAMC): Calibration, Accuracy Study, and Clinical Applications , 2010, IEEE Transactions on Medical Imaging.

[34]  Dimitrios Chytas,et al.  Augmented Reality in Orthopedics: Current State and Future Directions , 2019, Front. Surg..

[35]  Nassir Navab,et al.  Visual marker detection and decoding in AR systems: a comparative study , 2002, Proceedings. International Symposium on Mixed and Augmented Reality.

[36]  Boram Lee,et al.  Measurements of Surgeons' Exposure to Ionizing Radiation Dose During Intraoperative Use of C-Arm Fluoroscopy , 2012, Spine.

[37]  Lejing Wang,et al.  Closed-Form Inverse Kinematics for Interventional C-Arm X-Ray Imaging With Six Degrees of Freedom: Modeling and Application , 2012, IEEE Transactions on Medical Imaging.

[38]  Simon Weidert,et al.  The 'Augmented' Circles: A Video-Guided Solution for the Down-the-Beam Positioning of IM Nail Holes , 2014, IPCAI.

[39]  L Kinzl,et al.  [Radiation dosage in orthopedics -- a comparison of computer-assisted procedures]. , 2003, Der Unfallchirurg.

[40]  Stefan Weber,et al.  A Portable Image Overlay Projection Device for Computer-Aided Open Liver Surgery , 2011, IEEE Transactions on Biomedical Engineering.

[41]  M. C. Müller,et al.  Evaluation der Strahlenexposition des Operationspersonals bei orthopädisch-unfallchirurgischen Operationen mithilfe des neuen Echtzeitdosimetriesystems „Dose Aware“ , 2014 .

[42]  Lejing Wang,et al.  Interactive 3D Visualization of a Single-View X-Ray Image , 2011, MICCAI.

[43]  Robert Gordon,et al.  Improving operating theatre communication between the orthopaedics surgeon and radiographer , 2014, ANZ journal of surgery.

[44]  M. Jäger,et al.  Digitalisierung und künstliche Intelligenz in Orthopädie und Unfallchirurgie , 2018, Der Orthopade.

[45]  Nassir Navab,et al.  Merging visible and invisible: two Camera-Augmented Mobile C-arm (CAMC) applications , 1999, Proceedings 2nd IEEE and ACM International Workshop on Augmented Reality (IWAR'99).

[46]  Simon Weidert,et al.  Relevance-Based Visualization to Improve Surgeon Perception , 2014, IPCAI.

[47]  T. Dipasquale,et al.  Radiation exposure to the orthopaedic surgical team during fluoroscopy: "how far away is far enough?". , 1997, Journal of orthopaedic trauma.