Comprehensive Bayesian structural identification using temperature variation

A modular Bayesian method is applied for structural identification of a reduced-scale aluminium bridge model subject to thermal loading. The deformation and temperature variations of the structure were measured using strain gauges and thermocouples. Feasibility of a practical, temperature-based, Bayesian structural identification is highlighted. This methodology used multiple responses to identify existent discrepancies of a model, calibrate the stiffness of the bridge support and establish uncertainty of a predicted response. Results show that the inference of a structural parameter is successful even in the presence of substantial modelling discrepancies, converging to its true physical value. However measurements should have a high dependency on the calibration parameters. Usage of temperature variations to perform structural identification is highlighted.

[1]  Ka-Veng Yuen,et al.  Structural health monitoring of Canton Tower using Bayesian framework , 2012 .

[2]  A. O'Hagan,et al.  Gaussian process emulation of dynamic computer codes , 2009 .

[3]  A. O'Hagan,et al.  Bayesian calibration of computer models , 2001 .

[4]  A. O'Hagan,et al.  Bayesian emulation of complex multi-output and dynamic computer models , 2010 .

[5]  Costas Papadimitriou,et al.  On prediction error correlation in Bayesian model updating , 2013 .

[6]  Jenný Brynjarsdóttir,et al.  Learning about physical parameters: the importance of model discrepancy , 2014 .

[7]  A. O'Hagan,et al.  Supplementary details on Bayesian Calibration of Computer Models , 2006 .

[8]  J. Beck,et al.  Bayesian Updating of Structural Models and Reliability using Markov Chain Monte Carlo Simulation , 2002 .

[9]  André H. Jesus,et al.  A statistical analysis of the dynamic response of a railway viaduct , 2014 .

[10]  Sankaran Mahadevan,et al.  Multivariate significance testing and model calibration under uncertainty , 2008 .

[11]  Ian F. C. Smith,et al.  Methodologies for predicting natural frequency variation of a suspension bridge , 2014 .

[12]  A. OHagan,et al.  Bayesian analysis of computer code outputs: A tutorial , 2006, Reliab. Eng. Syst. Saf..

[13]  J. Beck,et al.  Bayesian Model Updating Using Hybrid Monte Carlo Simulation with Application to Structural Dynamic Models with Many Uncertain Parameters , 2009 .

[14]  Saeed Eftekhar Azam,et al.  Damage Detection in Flexible Plates through Reduced-Order Modeling and Hybrid Particle-Kalman Filtering , 2015, Sensors.

[15]  Costas Papadimitriou,et al.  Hierarchical Bayesian model updating for structural identification , 2015 .

[16]  I. Smith,et al.  Structural identification with systematic errors and unknown uncertainty dependencies , 2013 .

[17]  Wei-Xin Ren,et al.  Parameter Selection in Finite-Element-Model Updating by Global Sensitivity Analysis Using Gaussian Process Metamodel , 2015 .

[18]  Eleni Chatzi,et al.  Metamodeling of dynamic nonlinear structural systems through polynomial chaos NARX models , 2015 .

[19]  James L. Beck,et al.  A Bayesian probabilistic approach to structural health monitoring , 1999, Proceedings of the 1999 American Control Conference (Cat. No. 99CH36251).

[20]  J. Beck,et al.  Updating Models and Their Uncertainties. I: Bayesian Statistical Framework , 1998 .

[21]  Daniel W. Apley,et al.  Improving Identifiability in Model Calibration Using Multiple Responses , 2012, DAC 2011.

[22]  K. Yuen Bayesian Methods for Structural Dynamics and Civil Engineering , 2010 .

[23]  Jun Zhang,et al.  Probability-Based Structural Health Monitoring Through Markov Chain Monte Carlo Sampling , 2016 .

[24]  M. W. Vanik,et al.  PROBABILISTIC APPROACH TO STRUCTURAL HEALTH MONITORING , 2000 .

[25]  P. G. Bakir,et al.  Investigation of Uncertainty Changes in Model Outputs for Finite-Element Model Updating Using Structural Health Monitoring Data , 2014 .

[26]  Luís C. Neves,et al.  An innovative framework for probabilistic-based structural assessment with an application to existing reinforced concrete structures , 2016 .

[27]  Paul D. Arendt,et al.  A preposterior analysis to predict identifiability in the experimental calibration of computer models , 2016 .

[28]  James O. Berger,et al.  Modularization in Bayesian analysis, with emphasis on analysis of computer models , 2009 .

[29]  S. Au,et al.  Bayesian model updating of a coupled-slab system using field test data utilizing an enhanced Markov chain Monte Carlo simulation algorithm , 2015 .

[30]  Christopher K. I. Williams,et al.  Gaussian Processes for Machine Learning (Adaptive Computation and Machine Learning) , 2005 .

[31]  Franklin Moon,et al.  Temperature-based structural health monitoring baseline for long-span bridges , 2015 .

[32]  Noel A Cressie,et al.  Statistics for Spatial Data. , 1992 .

[33]  Guido De Roeck,et al.  Dealing with uncertainty in model updating for damage assessment: A review , 2015 .

[34]  Paul D. Arendt,et al.  Quantification of model uncertainty: Calibration, model discrepancy, and identifiability , 2012 .

[35]  D. Higdon,et al.  Computer Model Calibration Using High-Dimensional Output , 2008 .

[36]  Ian F. C. Smith,et al.  Temperature Variations as Loads Cases for Structural Identification , 2013 .