Insight into shear strength functions of unsaturated granulates by DEM analyses

Abstract Based on numerical experiments using the distinct element method, revised with the capillary water contact model proposed, this paper presents an insight into the shear strength functions of unsaturated granulates. The studies indicate that there appears to be a unique peak/residual shear strength envelope if it is described by the generalized effective stress (GES) proposed. The curve of GES due to suction is observed to be analogous to the water-retention curve, and is correlated with the particle gradation. The two shear strength functions proposed appear to be able to reflect both the nonlinear feature and the effect of particle gradation for unsaturated soils.

[1]  Gye-Chun Cho,et al.  UNSATURATED PARTICULATE MATERIALS--PARTICLE-LEVEL STUDIES , 2001 .

[2]  D. Fredlund,et al.  The shear strength of unsaturated soils , 1978 .

[3]  Ekkehard Ramm,et al.  From particle ensembles to Cosserat continua: homogenization of contact forces towards stresses and couple stresses , 2003 .

[4]  J. Ting,et al.  Discrete numerical model for soil mechanics , 1989 .

[5]  De’an Sun,et al.  Simulating the collapse of unsaturated soil by DEM , 2002 .

[6]  T. Ng,et al.  A three-dimensional discrete element model using arrays of ellipsoids , 1997 .

[7]  A. Anandarajah,et al.  On influence of fabric anisotropy on the stress-strain behavior of clays , 2000 .

[8]  D. Fredlund,et al.  Use of the grain-size distribution for estimation of the soil-water characteristic curve , 2002 .

[9]  C. Thornton Force Transmission in Granular Media , 1997 .

[10]  P. Cundall,et al.  A discrete numerical model for granular assemblies , 1979 .

[11]  S. Nemat-Nasser,et al.  A Micromechanical Description of Granular Material Behavior , 1981 .

[12]  Jean-Pierre Bardet,et al.  A numerical investigation of the structure of persistent shear bands in granular media , 1991 .

[13]  D. G. Fredlund,et al.  Density and compressibility characteristics of air–water mixtures , 1976 .

[14]  J. Bardet,et al.  The asymmetry of stress in granular media , 2001 .

[15]  Colin Thornton,et al.  A Theoretical Study of the Liquid Bridge Forces between Two Rigid Spherical Bodies , 1993 .

[16]  R. Chaney,et al.  DETERMINATION OF SHEAR STRENGTH PARAMETERS OF UNSATURATED SILTS AND SANDS BASED ON THE WATER RETENTION CURVE , 1997 .

[17]  R. A. Fisher On the capillary forces in an ideal soil; correction of formulae given by W. B. Haines , 1926, The Journal of Agricultural Science.

[18]  A. W. Bishop,et al.  The Principle of Effective Stress , 1959 .

[19]  A. Anandarajah Discrete-element method for simulating behavior of cohesive soil , 1994 .

[20]  Ching S. Chang,et al.  Interparticle forces and displacements in granular materials , 1997 .

[21]  De’an Sun,et al.  Numerical study of soil collapse behavior by discrete element modelling , 2003 .

[22]  Colin Thornton,et al.  Impact of elastic spheres with and without adhesion , 1991 .

[23]  Ching S. Chang,et al.  A micromechanical-based micropolar theory for deformation of granular solids , 1991 .

[24]  Eduardo Alonso,et al.  Microstructural deformation mechanisms of unsaturated granular soils , 2002 .

[25]  James K. Mitchell,et al.  New Perspectives on Soil Creep , 1993 .

[26]  G. Mason,et al.  Liquid bridges between spheres , 1965 .

[27]  Alan W. Bishop,et al.  Undrained Triaxial Tests on Saturated Sands and Their Significance in the General Theory of Shear Strength , 1950 .

[28]  Delwyn G. Fredlund,et al.  The relationship of the unsaturated soil shear strength to the soil-water characteristic curve , 1996 .

[29]  Kenichi Soga,et al.  Fundamentals of Soil Behaviour , 2005 .

[30]  A. Bishop,et al.  Some Aspects of Effective Stress in Saturated and Partly Saturated Soils , 1963 .

[31]  M. Oda,et al.  Rolling Resistance at Contacts in Simulation of Shear Band Development by DEM , 1998 .

[32]  Ching S. Chang,et al.  Second-gradient constitutive theory for granular material with random packing structure , 1995 .

[33]  Colin Thornton,et al.  Quasi-static shear deformation of a soft particle system , 2000 .

[34]  Serge Leroueil,et al.  An efficient technique for generating homogeneous specimens for DEM studies , 2003 .

[35]  D. J. Barnes,et al.  Computer simulated deformation of compact granular assemblies , 1986 .

[36]  A. Selvadurai Mechanics of Structured Media , 1981 .

[37]  D. E. Pufahl,et al.  Model for the prediction of shear strength with respect to soil suction , 1996 .

[38]  S. Leroueil,et al.  Combined effect of fabric, bonding and partial saturation on yielding of soils , 2000 .

[39]  C. Thornton NUMERICAL SIMULATIONS OF DEVIATORIC SHEAR DEFORMATION OF GRANULAR MEDIA , 2000 .

[40]  T. G. Sitharam,et al.  Micromechanical Modelling of Granular Materials: Effect of Particle Size and Gradation , 2000 .

[41]  D. Fredlund,et al.  Soil Mechanics for Unsaturated Soils , 1993 .

[42]  P. A. Cundall,et al.  Computer Simulations of Dense Sphere Assemblies , 1988 .

[43]  Ching S. Chang,et al.  Constitutive relation for a particulate medium with the effect of particle rotation , 1990 .