Finding a Needle in the Haystack: Attention-Based Classification of High Resolution Microscopy Images

This diagnostic study describes a novel attention-based deep neural network framework for classifying microscopy images to identify Barrett esophagus and esophageal adenocarcinoma.

[1]  Leslie N. Smith,et al.  Cyclical Learning Rates for Training Neural Networks , 2015, 2017 IEEE Winter Conference on Applications of Computer Vision (WACV).

[2]  Aleksey Boyko,et al.  Detecting Cancer Metastases on Gigapixel Pathology Images , 2017, ArXiv.

[3]  Saeed Hassanpour,et al.  Deep Learning for Classification of Colorectal Polyps on Whole-slide Images , 2017, Journal of pathology informatics.

[4]  Jiebo Luo,et al.  Image Captioning with Semantic Attention , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[5]  H. Adami,et al.  A global assessment of the oesophageal adenocarcinoma epidemic , 2012, Gut.

[6]  Yi Yang,et al.  Attention to Scale: Scale-Aware Semantic Image Segmentation , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[7]  Wolzt,et al.  World Medical Association Declaration of Helsinki: ethical principles for medical research involving human subjects. , 2003, The Journal of the American College of Dentists.

[8]  R. Haggitt,et al.  Barrett's esophagus, dysplasia, and adenocarcinoma. , 1994, Human pathology.

[9]  Tao Mei,et al.  Look Closer to See Better: Recurrent Attention Convolutional Neural Network for Fine-Grained Image Recognition , 2017, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[10]  Ehsan Kazemi,et al.  Deep Convolutional Neural Networks Enable Discrimination of Heterogeneous Digital Pathology Images , 2017, bioRxiv.

[11]  A. Polednak,et al.  Trends in survival for both histologic types of esophageal cancer in U.S. surveillance, epidemiology and end results areas , 2003, International journal of cancer.

[12]  Aristotelis Tsirigos,et al.  Classification and Mutation Prediction from Non-Small Cell Lung Cancer Histopathology Images using Deep Learning , 2017, bioRxiv.

[13]  Sergey Ioffe,et al.  Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift , 2015, ICML.

[14]  R. Goyal,et al.  The histologic spectrum of Barrett's esophagus. , 1976, The New England journal of medicine.

[15]  Giovanni Montana,et al.  Learning to detect chest radiographs containing lung nodules using visual attention networks , 2017, ArXiv.

[16]  Gregory Y. Lauwers,et al.  Interobserver Variability in the Diagnosis of Crypt Dysplasia in Barrett Esophagus , 2011, The American journal of surgical pathology.

[17]  J. Goldblum,et al.  Odze and Goldblum Surgical Pathology of the GI Tract, Liver, Biliary Tract and Pancreas , 2014 .

[18]  Saeed Hassanpour,et al.  Pathologist-level classification of histologic patterns on resected lung adenocarcinoma slides with deep neural networks , 2019, Scientific Reports.

[19]  Joel H. Saltz,et al.  Patch-Based Convolutional Neural Network for Whole Slide Tissue Image Classification , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[20]  Giovanni Montana,et al.  Learning what to look in chest X-rays with a recurrent visual attention model , 2017, ArXiv.

[21]  Yoshua Bengio,et al.  Show, Attend and Tell: Neural Image Caption Generation with Visual Attention , 2015, ICML.

[22]  M F Dixon,et al.  The Vienna classification of gastrointestinal epithelial neoplasia , 2000, Gut.

[23]  Christopher P. Wild,et al.  Reflux, Barrett's oesophagus and adenocarcinoma: burning questions , 2003, Nature Reviews Cancer.

[24]  Anant Madabhushi,et al.  A Deep Convolutional Neural Network for segmenting and classifying epithelial and stromal regions in histopathological images , 2016, Neurocomputing.

[25]  C. Gutschow,et al.  Demographic variations in the rising incidence of esophageal adenocarcinoma in white males , 2001, Cancer.

[26]  Jian Sun,et al.  Identity Mappings in Deep Residual Networks , 2016, ECCV.

[27]  G. Lapertosa,et al.  Risk factors for Barrett's esophagus: A case‐control study , 2002, International journal of cancer.

[28]  Jian Sun,et al.  Deep Residual Learning for Image Recognition , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[29]  Akira Saito,et al.  Automated gastric cancer diagnosis on H&E-stained sections; ltraining a classifier on a large scale with multiple instance machine learning , 2013, Medical Imaging.

[30]  Wei-Hung Weng,et al.  Learning Deep Representations of Medical Images using Siamese CNNs with Application to Content-Based Image Retrieval , 2017, ArXiv.

[31]  Yoshua Bengio,et al.  Understanding the difficulty of training deep feedforward neural networks , 2010, AISTATS.

[32]  Saeed Hassanpour,et al.  Looking Under the Hood: Deep Neural Network Visualization to Interpret Whole-Slide Image Analysis Outcomes for Colorectal Polyps , 2017, 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW).

[33]  Xiaogang Wang,et al.  Residual Attention Network for Image Classification , 2017, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[34]  Emanuele Pesce,et al.  Learning to detect chest radiographs containing pulmonary lesions using visual attention networks , 2017, Medical Image Anal..

[35]  Chandan Chakraborty,et al.  Efficient deep learning model for mitosis detection using breast histopathology images , 2017, Comput. Medical Imaging Graph..

[36]  Lin Yang,et al.  MDNet: A Semantically and Visually Interpretable Medical Image Diagnosis Network , 2017, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[37]  Anant Madabhushi,et al.  Training a cell-level classifier for detecting basal-cell carcinoma by combining human visual attention maps with low-level handcrafted features , 2017, Journal of medical imaging.

[38]  J. Siewert,et al.  Barrett's esophagus: Pathogenesis, epidemiology, functional abnormalities, malignant degeneration, and surgical management , 2005, Dysphagia.

[39]  Andrew Zisserman,et al.  Spatial Transformer Networks , 2015, NIPS.

[40]  Nitish Srivastava,et al.  Dropout: a simple way to prevent neural networks from overfitting , 2014, J. Mach. Learn. Res..

[41]  Yi Yang,et al.  Diagnose like a Radiologist: Attention Guided Convolutional Neural Network for Thorax Disease Classification , 2018, ArXiv.

[42]  L. Karnell,et al.  National Cancer Data Base report on esophageal carcinoma , 1996, Cancer.

[43]  Geoffrey E. Hinton,et al.  ImageNet classification with deep convolutional neural networks , 2012, Commun. ACM.

[44]  Jian Sun,et al.  Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[45]  L. Brown,et al.  Epidemiologic trends in esophageal and gastric cancer in the United States. , 2002, Surgical oncology clinics of North America.

[46]  Frank Hutter,et al.  SGDR: Stochastic Gradient Descent with Warm Restarts , 2016, ICLR.

[47]  Saeed Hassanpour,et al.  Automated Detection of Celiac Disease on Duodenal Biopsy Slides: A Deep Learning Approach , 2019, Journal of pathology informatics.

[48]  Daisuke Komura,et al.  Machine Learning Methods for Histopathological Image Analysis , 2017, Computational and structural biotechnology journal.

[49]  Jérémie F. Cohen,et al.  STARD 2015: An Updated List of Essential Items for Reporting Diagnostic Accuracy Studies. , 2015, Radiology.

[50]  Blot Wj,et al.  Esophageal cancer trends and risk factors. , 1994 .