On the minimal model for the low frequency wobbling instability of friction discs

An analytical and numerical study of the wobbling dynamics of friction disks is presented. Of particular interest is the excitation mechanism taking into account two contrarian effects both originating in dry friction: the circulatory terms describing the energy input due to the sliding contacts and the friction induced damping which stabilizes the system. Balance of these terms determines the instability domain in the parameter space. It is shown that there is a slip threshold so that, if the slip is under this limit, the system remains stable. If the slip is larger than this limit, then the criterion of stability is determined by the relation between the friction coefficient and the internal damping. The limit cycle appearing in the unstable domain is also investigated. It is shown that the limit cycle can be described as a kind of a regular reverse precession of the wobbling disc. Its amplitude is limited by the geometric nonlinearity and partial contact loss. Analytic results are compared with numeric simulations.

[1]  W. Stamm Modellierung und Simulation von Mehrkörpersystemen mit flächigen Reibkontakten , 2011 .

[2]  L. Gaul,et al.  A minimal model for studying properties of the mode-coupling type instability in friction induced oscillations , 2002 .

[3]  A. Fidlin,et al.  On the radial dynamics of friction disks , 2009 .

[4]  R. Ibrahim Friction-Induced Vibration, Chatter, Squeal, and Chaos—Part I: Mechanics of Contact and Friction , 1994 .

[5]  Utz von Wagner,et al.  Minimal models for disk brake squeal , 2007 .

[6]  Hidekazu Kohira,et al.  Numerical simulation of slider dynamics during slider-disk contact , 2003 .

[7]  Louis Jezequel,et al.  Analysis of squeal noise and mode coupling instabilities including damping and gyroscopic effects , 2008 .

[8]  John E. Mottershead,et al.  Vibration- and friction-induced instability in disks , 1998 .

[9]  J. Wallaschek,et al.  A Survey of the Present State of Friction Modelling in the Analytical and Numerical Investigation of Brake Noise Generation , 1999 .

[10]  Raouf A. Ibrahim,et al.  Friction-Induced Vibration, Chatter, Squeal, and Chaos—Part II: Dynamics and Modeling , 1994 .

[11]  E. Brommundt Ein Reibschwinger mit Selbsterregung ohne fallende Reibkennlinie , 1995 .

[12]  J. T. Oden,et al.  Numerical Modeling of Friction-Induced Vibrations and Dynamic Instabilities , 1994 .

[13]  F. Sadeghi,et al.  Oscillation pattern of stick–slip vibrations , 2009 .

[14]  Karl Popp,et al.  Dynamics with friction : modeling, analysis and experiment , 1996 .

[15]  B. Jayawardhana,et al.  A class of port-controlled Hamiltonian systems , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[16]  Richard Phillips Feynman,et al.  ‘‘Surely You’re Joking Mr. Feynman!’’ Adventures of a Curious Character , 1985 .

[17]  C. Canudas de Wit,et al.  Observer-based optimal control of dry clutch engagement , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[18]  F. Hecht “Surely you're joking, Mr. Feynman!” Adventures of a curious character , 1986 .

[19]  Daniel Hochlenert Selbsterregte Schwingungen in Scheibenbremsen: Mathematische Modellbildung und aktive Unterdrückung von Bremsenquietschen , 2006 .

[20]  A. Fidlin,et al.  RADIAL DYNAMICS OF RIGID FRICTION DISKS WITH ALTERNATING STICKING AND SLIDING , 2008 .

[21]  David Rakhmilʹevich Merkin,et al.  Introduction to the Theory of Stability , 1996 .