Error Analysis of the S-Step Lanczos Method in Finite Precision
暂无分享,去创建一个
[1] James Demmel,et al. Minimizing communication in sparse matrix solvers , 2009, Proceedings of the Conference on High Performance Computing Networking, Storage and Analysis.
[2] C. Paige. Accuracy and effectiveness of the Lanczos algorithm for the symmetric eigenproblem , 1980 .
[3] H. Walker. Implementation of the GMRES method using householder transformations , 1988 .
[4] Graham F. Carey,et al. Parallelizable Restarted Iterative Methods for Nonsymmetric Linear Systems , 1991, PPSC.
[5] G. Meurant. The Lanczos and Conjugate Gradient Algorithms: From Theory to Finite Precision Computations , 2006 .
[6] Jens-Peter M. Zemke,et al. Krylov Subspace Methods in Finite Precision : A Unified Approach , 2003 .
[7] H. Simon. The Lanczos algorithm with partial reorthogonalization , 1984 .
[8] Mark Hoemmen,et al. Communication-avoiding Krylov subspace methods , 2010 .
[9] Christopher C. Paige,et al. The computation of eigenvalues and eigenvectors of very large sparse matrices , 1971 .
[10] Dennis Gannon,et al. On the Impact of Communication Complexity on the Design of Parallel Numerical Algorithms , 1984, IEEE Transactions on Computers.
[11] Anthony T. Chronopoulos,et al. Parallel Iterative S-Step Methods for Unsymmetric Linear Systems , 1996, Parallel Comput..
[12] H. Walker,et al. Note on a Householder implementation of the GMRES method , 1986 .
[13] Anne Greenbaum,et al. Predicting the Behavior of Finite Precision Lanczos and Conjugate Gradient Computations , 2015, SIAM J. Matrix Anal. Appl..
[14] W. Joubert,et al. Parallelizable restarted iterative methods for nonsymmetric linear systems. part I: Theory , 1992 .
[15] Martin H. Gutknecht,et al. Lanczos-type solvers for nonsymmetric linear systems of equations , 1997, Acta Numerica.
[16] Anthony T. Chronopoulos,et al. s-step iterative methods for symmetric linear systems , 1989 .
[17] Christopher C. Paige,et al. An Augmented Stability Result for the Lanczos Hermitian Matrix Tridiagonalization Process , 2010, SIAM J. Matrix Anal. Appl..
[18] Anthony T. Chronopoulos,et al. On the efficient implementation of preconditioned s-step conjugate gradient methods on multiprocessors with memory hierarchy , 1989, Parallel Comput..
[19] James Demmel,et al. Avoiding Communication in Nonsymmetric Lanczos-Based Krylov Subspace Methods , 2013, SIAM J. Sci. Comput..
[20] G. Meurant,et al. The Lanczos and conjugate gradient algorithms in finite precision arithmetic , 2006, Acta Numerica.
[21] C. Paige. Error Analysis of the Lanczos Algorithm for Tridiagonalizing a Symmetric Matrix , 1976 .
[22] C. Paige. Computational variants of the Lanczos method for the eigenproblem , 1972 .
[23] John Van Rosendale. Minimizing Inner Product Data Dependencies in Conjugate Gradient Iteration , 1983, ICPP.
[24] James Demmel,et al. Communication lower bounds and optimal algorithms for numerical linear algebra*† , 2014, Acta Numerica.
[25] B. Parlett,et al. The Lanczos algorithm with selective orthogonalization , 1979 .
[26] Wolfgang Wülling. On Stabilization and Convergence of Clustered Ritz Values in the Lanczos Method , 2005, SIAM J. Matrix Anal. Appl..
[27] Zdenek Strakos,et al. Accuracy of Two Three-term and Three Two-term Recurrences for Krylov Space Solvers , 2000, SIAM J. Matrix Anal. Appl..
[28] Sivan Toledo,et al. Quantitative performance modeling of scientific computations and creating locality in numerical algorithms , 1995 .
[29] Anthony T. Chronopoulos,et al. An efficient nonsymmetric Lanczos method on parallel vector computers , 1992 .
[30] Eric de Sturler,et al. A Performance Model for Krylov Subspace Methods on Mesh-Based Parallel Computers , 1996, Parallel Comput..
[31] L. Reichel,et al. A Newton basis GMRES implementation , 1994 .
[32] H. V. der. Residual Replacement Strategies for Krylov Subspace Iterative Methods for the Convergence of True Residuals , 2000 .
[33] C. Lanczos. An iteration method for the solution of the eigenvalue problem of linear differential and integral operators , 1950 .
[34] Robert H. Halstead,et al. Matrix Computations , 2011, Encyclopedia of Parallel Computing.
[35] J. Demmel,et al. Avoiding Communication in Computing Krylov Subspaces , 2007 .
[36] Lothar Reichel,et al. On the generation of Krylov subspace bases , 2012 .
[37] Anthony T. Chronopoulos,et al. A class of Lanczos-like algorithms implemented on parallel computers , 1991, Parallel Comput..
[38] Qiang Ye,et al. Residual Replacement Strategies for Krylov Subspace Iterative Methods for the Convergence of True Residuals , 2000, SIAM J. Sci. Comput..
[39] James Demmel,et al. A Residual Replacement Strategy for Improving the Maximum Attainable Accuracy of s-Step Krylov Subspace Methods , 2014, SIAM J. Matrix Anal. Appl..