Error Analysis of the S-Step Lanczos Method in Finite Precision

Abstract : The s-step Lanczos method is an attractive alternative to the classical Lanczos method as it enables an O(s) reduction in data movement over a fixed number of iterations. This can significantly improve performance on modern computers. In order for s-step methods to be widely adopted, it is important to better understand their error properties. Although the s-step Lanczos method is equivalent to the classical Lanczos method in exact arithmetic, empirical observations demonstrate that it can behave quite differently in finite precision. In the s-step Lanczos method the computed Lanczos vectors can lose orthogonality at a much quicker rate than the classical method a property which seems to worsen with increasing s. In this paper, we present, for the first time, a complete rounding error analysis of the s-step Lanczos method. Our methodology is analogous to Paige's rounding error analysis for the classical Lanczos method. Our analysis gives upper bounds on the loss of normality of and orthogonality between the computed Lanczos vectors, as well as a recurrence for the loss of orthogonality. The derived bounds are very similar to those of Paige for classical Lanczos, but with the addition of an amplification term which depends on the condition number of the Krylov bases computed every s-steps. Our results confirm theoretically what is well-known empirically: the conditioning of the Krylov bases plays a large role in determining finite precision behavior.

[1]  James Demmel,et al.  Minimizing communication in sparse matrix solvers , 2009, Proceedings of the Conference on High Performance Computing Networking, Storage and Analysis.

[2]  C. Paige Accuracy and effectiveness of the Lanczos algorithm for the symmetric eigenproblem , 1980 .

[3]  H. Walker Implementation of the GMRES method using householder transformations , 1988 .

[4]  Graham F. Carey,et al.  Parallelizable Restarted Iterative Methods for Nonsymmetric Linear Systems , 1991, PPSC.

[5]  G. Meurant The Lanczos and Conjugate Gradient Algorithms: From Theory to Finite Precision Computations , 2006 .

[6]  Jens-Peter M. Zemke,et al.  Krylov Subspace Methods in Finite Precision : A Unified Approach , 2003 .

[7]  H. Simon The Lanczos algorithm with partial reorthogonalization , 1984 .

[8]  Mark Hoemmen,et al.  Communication-avoiding Krylov subspace methods , 2010 .

[9]  Christopher C. Paige,et al.  The computation of eigenvalues and eigenvectors of very large sparse matrices , 1971 .

[10]  Dennis Gannon,et al.  On the Impact of Communication Complexity on the Design of Parallel Numerical Algorithms , 1984, IEEE Transactions on Computers.

[11]  Anthony T. Chronopoulos,et al.  Parallel Iterative S-Step Methods for Unsymmetric Linear Systems , 1996, Parallel Comput..

[12]  H. Walker,et al.  Note on a Householder implementation of the GMRES method , 1986 .

[13]  Anne Greenbaum,et al.  Predicting the Behavior of Finite Precision Lanczos and Conjugate Gradient Computations , 2015, SIAM J. Matrix Anal. Appl..

[14]  W. Joubert,et al.  Parallelizable restarted iterative methods for nonsymmetric linear systems. part I: Theory , 1992 .

[15]  Martin H. Gutknecht,et al.  Lanczos-type solvers for nonsymmetric linear systems of equations , 1997, Acta Numerica.

[16]  Anthony T. Chronopoulos,et al.  s-step iterative methods for symmetric linear systems , 1989 .

[17]  Christopher C. Paige,et al.  An Augmented Stability Result for the Lanczos Hermitian Matrix Tridiagonalization Process , 2010, SIAM J. Matrix Anal. Appl..

[18]  Anthony T. Chronopoulos,et al.  On the efficient implementation of preconditioned s-step conjugate gradient methods on multiprocessors with memory hierarchy , 1989, Parallel Comput..

[19]  James Demmel,et al.  Avoiding Communication in Nonsymmetric Lanczos-Based Krylov Subspace Methods , 2013, SIAM J. Sci. Comput..

[20]  G. Meurant,et al.  The Lanczos and conjugate gradient algorithms in finite precision arithmetic , 2006, Acta Numerica.

[21]  C. Paige Error Analysis of the Lanczos Algorithm for Tridiagonalizing a Symmetric Matrix , 1976 .

[22]  C. Paige Computational variants of the Lanczos method for the eigenproblem , 1972 .

[23]  John Van Rosendale Minimizing Inner Product Data Dependencies in Conjugate Gradient Iteration , 1983, ICPP.

[24]  James Demmel,et al.  Communication lower bounds and optimal algorithms for numerical linear algebra*† , 2014, Acta Numerica.

[25]  B. Parlett,et al.  The Lanczos algorithm with selective orthogonalization , 1979 .

[26]  Wolfgang Wülling On Stabilization and Convergence of Clustered Ritz Values in the Lanczos Method , 2005, SIAM J. Matrix Anal. Appl..

[27]  Zdenek Strakos,et al.  Accuracy of Two Three-term and Three Two-term Recurrences for Krylov Space Solvers , 2000, SIAM J. Matrix Anal. Appl..

[28]  Sivan Toledo,et al.  Quantitative performance modeling of scientific computations and creating locality in numerical algorithms , 1995 .

[29]  Anthony T. Chronopoulos,et al.  An efficient nonsymmetric Lanczos method on parallel vector computers , 1992 .

[30]  Eric de Sturler,et al.  A Performance Model for Krylov Subspace Methods on Mesh-Based Parallel Computers , 1996, Parallel Comput..

[31]  L. Reichel,et al.  A Newton basis GMRES implementation , 1994 .

[32]  H. V. der Residual Replacement Strategies for Krylov Subspace Iterative Methods for the Convergence of True Residuals , 2000 .

[33]  C. Lanczos An iteration method for the solution of the eigenvalue problem of linear differential and integral operators , 1950 .

[34]  Robert H. Halstead,et al.  Matrix Computations , 2011, Encyclopedia of Parallel Computing.

[35]  J. Demmel,et al.  Avoiding Communication in Computing Krylov Subspaces , 2007 .

[36]  Lothar Reichel,et al.  On the generation of Krylov subspace bases , 2012 .

[37]  Anthony T. Chronopoulos,et al.  A class of Lanczos-like algorithms implemented on parallel computers , 1991, Parallel Comput..

[38]  Qiang Ye,et al.  Residual Replacement Strategies for Krylov Subspace Iterative Methods for the Convergence of True Residuals , 2000, SIAM J. Sci. Comput..

[39]  James Demmel,et al.  A Residual Replacement Strategy for Improving the Maximum Attainable Accuracy of s-Step Krylov Subspace Methods , 2014, SIAM J. Matrix Anal. Appl..