Inverse M-Matrix Inequalities and Generalized Ultrametric Matrices

Abstract We use weighted directed graphs to introduce a class of nonnegative matrices which, under a simple condition, are inverse M-matrices. We call our class the generalized ultrametic matrices, since it contains the class of (symmetric) ultrametric matrices and some unsymmetric matrices. We show that a generalized ultrametric matrix is the inverse of a row and column diagonally dominant M-matrix if and only if it contains no zero row and no two of its rows are identical. This theorem generalizes the known result that a (symmetric) strictly ultrametric matrix is the inverse of a strictly diagonally dominant M-matrix. We also present inequalities and conditions for equality among the entries of the inverse of a row diagonally dominant M-matrix. Some of these inequalities and conditions for equality generalize results of Stieltjes on inverses of symmetric diagonally dominant M-matrices.

[1]  Luck J. Watford The Schur complement of a generalized M-matrix , 1972 .

[2]  R. Willoughby The inverse M-matrix problem , 1977 .

[3]  Richard A. Brualdi,et al.  Determinantal identities: Gauss, Schur, Cauchy, Sylvester, Kronecker, Jacobi, Binet, Laplace, Muir, and Cayley , 1983 .

[4]  Richard S. Varga,et al.  An algorithm for determining if the inverse of a strictly diagonally dominant Stieltjes matrix is strictly ultrametric , 1993 .

[5]  Audra E. Kosh,et al.  Linear Algebra and its Applications , 1992 .

[6]  H. Schneider Theorems on M-splittings of a singular M-matrix which depend on graph structure☆ , 1984 .

[7]  K. Fan NOTE ON M -MATRICES , 1960 .

[8]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[9]  T. Stieltjes Sur les racines de l'équationXn=0 , 1887 .

[10]  S. Martínez,et al.  Inverse of Strictly Ultrametric Matrices are of Stieltjes Type , 1994 .

[11]  Richard S. Varga,et al.  On theLU factorization ofM-matrices , 1981 .

[12]  Robert J. Plemmons,et al.  Nonnegative Matrices in the Mathematical Sciences , 1979, Classics in Applied Mathematics.

[13]  K. Abromeit Music Received , 2023, Notes.

[14]  R. S. Varga,et al.  On the $LU$ Factorization of M-Matrices: Cardinality of the Set $\mathcal{P}_n^g ( A )$ , 1982 .

[15]  M. Fiedler,et al.  Diagonally dominant matrices , 1967 .

[16]  Richard S. Varga,et al.  A Linear Algebra Proof that the Inverse of a Strictly UltrametricMatrix is a Strictly Diagonally Dominant Stieltjes Matrix , 1994 .

[17]  Richard S. Varga,et al.  On Symmetric Ultrametric Matrices , 1993 .