Inverse M-Matrix Inequalities and Generalized Ultrametric Matrices
暂无分享,去创建一个
Hans Schneider | Judith J. McDonald | Michael J. Tsatsomeros | M. Neumann | H. Schneider | M. Tsatsomeros | J. McDonald | Michael Neumann
[1] Luck J. Watford. The Schur complement of a generalized M-matrix , 1972 .
[2] R. Willoughby. The inverse M-matrix problem , 1977 .
[3] Richard A. Brualdi,et al. Determinantal identities: Gauss, Schur, Cauchy, Sylvester, Kronecker, Jacobi, Binet, Laplace, Muir, and Cayley , 1983 .
[4] Richard S. Varga,et al. An algorithm for determining if the inverse of a strictly diagonally dominant Stieltjes matrix is strictly ultrametric , 1993 .
[5] Audra E. Kosh,et al. Linear Algebra and its Applications , 1992 .
[6] H. Schneider. Theorems on M-splittings of a singular M-matrix which depend on graph structure☆ , 1984 .
[7] K. Fan. NOTE ON M -MATRICES , 1960 .
[8] G. G. Stokes. "J." , 1890, The New Yale Book of Quotations.
[9] T. Stieltjes. Sur les racines de l'équationXn=0 , 1887 .
[10] S. Martínez,et al. Inverse of Strictly Ultrametric Matrices are of Stieltjes Type , 1994 .
[11] Richard S. Varga,et al. On theLU factorization ofM-matrices , 1981 .
[12] Robert J. Plemmons,et al. Nonnegative Matrices in the Mathematical Sciences , 1979, Classics in Applied Mathematics.
[13] K. Abromeit. Music Received , 2023, Notes.
[14] R. S. Varga,et al. On the $LU$ Factorization of M-Matrices: Cardinality of the Set $\mathcal{P}_n^g ( A )$ , 1982 .
[15] M. Fiedler,et al. Diagonally dominant matrices , 1967 .
[16] Richard S. Varga,et al. A Linear Algebra Proof that the Inverse of a Strictly UltrametricMatrix is a Strictly Diagonally Dominant Stieltjes Matrix , 1994 .
[17] Richard S. Varga,et al. On Symmetric Ultrametric Matrices , 1993 .