pySecDec: A toolbox for the numerical evaluation of multi-scale integrals

Abstract We present py SecDec , a new version of the program SecDec , which performs the factorization of dimensionally regulated poles in parametric integrals, and the subsequent numerical evaluation of the finite coefficients. The algebraic part of the program is now written in the form of python modules, which allow a very flexible usage. The optimization of the C++ code, generated using FORM , is improved, leading to a faster numerical convergence. The new version also creates a library of the integrand functions, such that it can be linked to user-specific codes for the evaluation of matrix elements in a way similar to analytic integral libraries. Program summary Program Title: pySecDec Program Files doi: http://dx.doi.org/10.17632/3y8bbz9c9v.1 Licensing provisions: GNU Public License v3 Programming language: python, FORM, C++ External routines/libraries: catch [1], gsl [2], numpy [3], sympy [4], Nauty [5], Cuba [6], FORM [7], Normaliz [8]. The program can also be used in a mode which does not require Normaliz. Journal reference of previous version: Comput. Phys. Commun. 196 (2015) 470–491. Nature of the problem: Extraction of ultraviolet and infrared singularities from parametric integrals appearing in higher order perturbative calculations in quantum field theory. Numerical integration in the presence of integrable singularities (e.g. kinematic thresholds). Solution method: Algebraic extraction of singularities within dimensional regularization using iterated sector decomposition. This leads to a Laurent series in the dimensional regularization parameter ϵ (and optionally other regulators), where the coefficients are finite integrals over the unit-hypercube. Those integrals are evaluated numerically by Monte Carlo integration. The integrable singularities are handled by choosing a suitable integration contour in the complex plane, in an automated way. The parameter integrals forming the coefficients of the Laurent series in the regulator(s) are provided in the form of libraries which can be linked to the calculation of (multi-) loop amplitudes. Restrictions: Depending on the complexity of the problem, limited by memory and CPU time. References: [1] https://github.com/philsquared/Catch/ . [2] http://www.gnu.org/software/gsl/ . [3] http://www.numpy.org/ . [4] http://www.sympy.org/ . [5] http://pallini.di.uniroma1.it/ . [6] T. Hahn, “CUBA: A Library for multidimensional numerical integration,” Comput. Phys. Commun. 168 (2005) 78 [hep-ph/0404043], http://www.feynarts.de/cuba/ . [7] J. Kuipers, T. Ueda and J. A. M. Vermaseren, “Code Optimization in FORM,” Comput. Phys. Commun. 189 (2015) 1 [arXiv:1310.7007], http://www.nikhef.nl/ form/ . [8] W. Bruns, B. Ichim, B. and T. Romer, C. Soger, “Normaliz. Algorithms for rational cones and affine monoids.” http://www.math.uos.de/normaliz/ .

[1]  M.Yu. Kalmykov,et al.  Massive Feynman diagrams and inverse binomial sums , 2004 .

[2]  Tobias Huber,et al.  HypExp, a Mathematica package for expanding hypergeometric functions around integer-valued parameters , 2006, Comput. Phys. Commun..

[3]  S. Borowka,et al.  Higgs Boson Pair Production in Gluon Fusion at Next-to-Leading Order with Full Top-Quark Mass Dependence. , 2016, Physical review letters.

[4]  Bogdan Ichim,et al.  The power of pyramid decomposition in Normaliz , 2012, J. Symb. Comput..

[5]  A. V. Smirnov,et al.  FIESTA 2: Parallelizeable multiloop numerical calculations , 2009, Comput. Phys. Commun..

[6]  R. Schabinger,et al.  A quasi-finite basis for multi-loop Feynman integrals , 2014, 1411.7392.

[7]  T. Riemann,et al.  Numerical evaluation of tensor Feynman integrals in Euclidean kinematics , 2010, 1010.1667.

[8]  R. Schabinger,et al.  Computation of form factors in massless QCD with finite master integrals , 2015, 1510.06758.

[9]  Takahiro Ueda,et al.  Code optimization in FORM , 2013, Comput. Phys. Commun..

[10]  A. Smirnov,et al.  FIESTA4: Optimized Feynman integral calculations with GPU support , 2015, Comput. Phys. Commun..

[11]  T. Zirke,et al.  Calculation of Multi-Loop Integrals with SecDec-3.0 , 2016, 1601.03982.

[12]  J. Henn Multiloop integrals in dimensional regularization made simple. , 2013, Physical review letters.

[13]  Takahiro Ueda,et al.  A geometric method of sector decomposition , 2009, Comput. Phys. Commun..

[14]  J. Fleischer,et al.  Analytic two-loop results for self-energy- and vertex-type diagrams with one non-zero mass , 1999 .

[15]  A. V. Smirnov,et al.  Feynman Integral Evaluation by a Sector decomposiTion Approach (FIESTA) , 2008, Comput. Phys. Commun..

[16]  D. Soper Techniques for QCD calculations by numerical integration , 1999, hep-ph/9910292.

[17]  S. Borowka,et al.  Full top quark mass dependence in Higgs boson pair production at NLO , 2016 .

[18]  Christian Bogner,et al.  Operating system: Unix , 1983 .

[19]  T. Binoth,et al.  An automatized algorithm to compute infrared divergent multi-loop integrals , 2000 .

[20]  A. Kotikov Differential equation method: The Calculation of N point Feynman diagrams , 1991 .

[21]  R. Schabinger,et al.  Numerical multi-loop calculations via finite integrals and one-mass EW-QCD Drell-Yan master integrals , 2017, 1701.06583.

[22]  J. Schlenk Techniques for higher order corrections and their application to LHC phenomenology , 2016 .

[23]  Gudrun Heinrich,et al.  SecDec-3.0: Numerical evaluation of multi-scale integrals beyond one loop , 2015, Comput. Phys. Commun..

[24]  Patricia M. Hinkley,et al.  30 years on ... , 1979, Michigan hospitals.

[25]  Winfried Bruns,et al.  Normaliz: Algorithms for rational cones and affine monoids , 2010 .

[26]  D. Maitre,et al.  Master integrals for fermionic contributions to massless three-loop form-factors , 2007, 0711.3590.

[27]  Master Integrals for the 2-loop QCD virtual corrections to the Forward-Backward Asymmetry , 2003, hep-ph/0311145.

[28]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[29]  Gudrun Heinrich,et al.  Sector Decomposition , 2008, 0803.4177.

[30]  J.A.M. Vermaseren,et al.  New features of FORM , 2000 .

[31]  Brendan D. McKay,et al.  Practical graph isomorphism, II , 2013, J. Symb. Comput..

[32]  Klaus Hepp,et al.  Proof of the Bogoliubov-Parasiuk theorem on renormalization , 1966 .

[33]  E. Panzer On hyperlogarithms and Feynman integrals with divergences and many scales , 2014, 1401.4361.

[34]  R. Bonciani,et al.  Two-loop planar master integrals for Higgs → 3 partons with full heavy-quark mass dependence , 2016, 1609.06685.

[35]  L. Tancredi,et al.  On the maximal cut of Feynman integrals and the solution of their differential equations , 2016, 1610.08397.

[36]  Thomas Hahn,et al.  Concurrent Cuba , 2014, Comput. Phys. Commun..

[37]  Gudrun Heinrich,et al.  SecDec: A general program for sector decomposition , 2010, Comput. Phys. Commun..

[38]  Gudrun Heinrich,et al.  pySecDec: A toolbox for the numerical evaluation of multi-scale integrals , 2017, Comput. Phys. Commun..

[39]  Alexey Pak,et al.  The toolbox of modern multi-loop calculations: novel analytic and semi-analytic techniques , 2011, 1111.0868.

[40]  Brian Gough,et al.  GNU Scientific Library Reference Manual - Third Edition , 2003 .

[41]  Takahiro Ueda,et al.  Sector decomposition via computational geometry , 2010 .

[42]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[43]  Junpei Fujimoto,et al.  New implementation of the sector decomposition on FORM , 2009, 0902.2656.

[44]  C. Schubert,et al.  An algebraic/numerical formalism for one-loop multi-leg amplitudes , 2005 .

[45]  T. Riemann,et al.  30 years, some 700 integrals, and 1 dessert, or: Electroweak two-loop corrections to the Zbb vertex , 2016, 1610.07059.

[46]  Thomas Hahn,et al.  Cuba - a library for multidimensional numerical integration , 2004, Comput. Phys. Commun..

[47]  Stefan Beerli A new method for evaluating two-loop Feynman integrals and its application to Higgs production , 2008 .

[48]  Charalampos Anastasiou,et al.  Evaluating multi-loop Feynman diagrams with infrared and threshold singularities numerically , 2007 .

[49]  G. Passarino,et al.  Two-Loop Vertices in Quantum Field Theory: Infrared Convergent Scalar Configurations , 2003, hep-ph/0311186.

[50]  A. Denner,et al.  High-Energy Approximation of One-Loop Feynman Integrals , 1996 .

[51]  A. V. Smirnov,et al.  FIESTA 3: Cluster-parallelizable multiloop numerical calculations in physical regions , 2013, Comput. Phys. Commun..

[52]  Differential Equations for Two-Loop Four-Point Functions , 1999, hep-ph/9912329.

[53]  Gudrun Heinrich,et al.  Numerical evaluation of multi-loop integrals for arbitrary kinematics with SecDec 2.0 , 2012, Comput. Phys. Commun..