How Far Are We from an Optimal, Adaptive DE?

We consider how an (almost) optimal parameter adaptation process for an adaptive DE might behave, and compare the behavior and performance of this approximately optimal process to that of existing, adaptive mechanisms for DE. An optimal parameter adaptation process is an useful notion for analyzing the parameter adaptation methods in adaptive DE as well as other adaptive evolutionary algorithms, but it cannot be known generally. Thus, we propose a Greedy Approximate Oracle method (GAO) which approximates an optimal parameter adaptation process. We compare the behavior of GAODE, a DE algorithm with GAO, to typical adaptive DEs on six benchmark functions and the BBOB benchmarks, and show that GAO can be used to (1) explore how much room for improvement there is in the performance of the adaptive DEs, and (2) obtain hints for developing future, effective parameter adaptation methods for adaptive DEs.

[1]  Mark Hoogendoorn,et al.  Parameter Control in Evolutionary Algorithms: Trends and Challenges , 2015, IEEE Transactions on Evolutionary Computation.

[2]  Saku Kukkonen,et al.  Real-parameter optimization with differential evolution , 2005, 2005 IEEE Congress on Evolutionary Computation.

[3]  Arthur C. Sanderson,et al.  JADE: Adaptive Differential Evolution With Optional External Archive , 2009, IEEE Transactions on Evolutionary Computation.

[4]  Ponnuthurai N. Suganthan,et al.  An Adaptive Differential Evolution Algorithm With Novel Mutation and Crossover Strategies for Global Numerical Optimization , 2012, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[5]  R. Salomon Re-evaluating genetic algorithm performance under coordinate rotation of benchmark functions. A survey of some theoretical and practical aspects of genetic algorithms. , 1996, Bio Systems.

[6]  Nikolaus Hansen,et al.  Evaluating the CMA Evolution Strategy on Multimodal Test Functions , 2004, PPSN.

[7]  Alex S. Fukunaga,et al.  Success-history based parameter adaptation for Differential Evolution , 2013, 2013 IEEE Congress on Evolutionary Computation.

[8]  Kiyoshi Tanaka,et al.  Comparison of Parameter Control Mechanisms in Multi-objective Differential Evolution , 2015, LION.

[9]  Christopher R. Stephens,et al.  "Optimal" mutation rates for genetic search , 2006, GECCO.

[10]  Petr Posík,et al.  JADE, an adaptive differential evolution algorithm, benchmarked on the BBOB noiseless testbed , 2012, GECCO '12.

[11]  Long Li,et al.  Differential evolution based on covariance matrix learning and bimodal distribution parameter setting , 2014, Appl. Soft Comput..

[12]  Anne Auger,et al.  Real-Parameter Black-Box Optimization Benchmarking 2009: Noiseless Functions Definitions , 2009 .

[13]  Janez Brest,et al.  Self-Adapting Control Parameters in Differential Evolution: A Comparative Study on Numerical Benchmark Problems , 2006, IEEE Transactions on Evolutionary Computation.

[14]  Thomas Bäck,et al.  Optimal Mutation Rates in Genetic Search , 1993, ICGA.

[15]  B. L. Schumaker,et al.  Noise in homodyne detection. , 1984, Optics letters.

[16]  Shu-Mei Guo,et al.  Enhancing Differential Evolution Utilizing Eigenvector-Based Crossover Operator , 2015, IEEE Transactions on Evolutionary Computation.

[17]  Anne Auger,et al.  Evolution Strategies , 2018, Handbook of Computational Intelligence.

[18]  Carlos A. Coello Coello,et al.  On the adaptation of the mutation scale factor in differential evolution , 2015, Optim. Lett..

[19]  Mehmet Fatih Tasgetiren,et al.  Differential evolution algorithm with ensemble of parameters and mutation strategies , 2011, Appl. Soft Comput..

[20]  Alex S. Fukunaga,et al.  Improving the search performance of SHADE using linear population size reduction , 2014, 2014 IEEE Congress on Evolutionary Computation (CEC).

[21]  Rainer Storn,et al.  Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces , 1997, J. Glob. Optim..

[22]  Ponnuthurai N. Suganthan,et al.  Recent advances in differential evolution - An updated survey , 2016, Swarm Evol. Comput..

[23]  Zbigniew Michalewicz,et al.  Parameter Control in Evolutionary Algorithms , 2007, Parameter Setting in Evolutionary Algorithms.

[24]  Xin Yao,et al.  Fast Evolution Strategies , 1997, Evolutionary Programming.

[25]  Michèle Sebag,et al.  Bi-population CMA-ES agorithms with surrogate models and line searches , 2013, GECCO.