Research on unsupervised feature learning for Android malware detection based on Restricted Boltzmann Machines

[1]  Yaser Jararweh,et al.  Live forensics of software attacks on cyber-physical systems , 2020, Future Gener. Comput. Syst..

[2]  Hung-Min Sun,et al.  An Android mutation malware detection based on deep learning using visualization of importance from codes , 2019 .

[3]  Berat A. Erol,et al.  An efficient unsupervised feature selection procedure through feature clustering , 2020, Pattern Recognit. Lett..

[4]  B. B. Gupta,et al.  Mitigation and risk factor analysis of android applications , 2018, Comput. Electr. Eng..

[5]  Xuejiao Liu,et al.  Identifying Android malware with system call co‐occurrence matrices , 2016, Trans. Emerg. Telecommun. Technol..

[6]  Bashar Nuseibeh,et al.  Designing Privacy-aware Internet of Things Applications , 2017, Inf. Sci..

[7]  Mark Stamp,et al.  Clustering for malware classification , 2017, Journal of Computer Virology and Hacking Techniques.

[8]  Mohammed Ouzzif,et al.  A Novel Security Framework for Managing Android Permissions Using Blockchain Technology , 2018, Int. J. Cloud Appl. Comput..

[9]  Sunil K. Muttoo,et al.  CENDroid - A cluster-ensemble classifier for detecting malicious Android applications , 2019, Comput. Secur..

[10]  Nitish Srivastava,et al.  Multimodal learning with deep Boltzmann machines , 2012, J. Mach. Learn. Res..

[11]  Shahid Alam,et al.  Mining nested flow of dominant APIs for detecting android malware , 2020, Comput. Networks.

[12]  Gianluca Stringhini,et al.  MaMaDroid , 2019, ACM Trans. Priv. Secur..

[13]  V. Natarajan,et al.  Android based malware detection using a multifeature collaborative decision fusion approach , 2015, Neurocomputing.

[14]  Antonella Santone,et al.  Deep learning for image-based mobile malware detection , 2020, Journal of Computer Virology and Hacking Techniques.

[15]  Miguel Á. Carreira-Perpiñán,et al.  On Contrastive Divergence Learning , 2005, AISTATS.

[16]  Shojafar Mohammad,et al.  SysDroid: a dynamic ML-based android malware analyzer using system call traces , 2020, Cluster Computing.

[17]  Liang Du,et al.  Unsupervised Feature Selection with Adaptive Structure Learning , 2015, KDD.

[18]  Elsayed A. Sallam,et al.  Deep Belief Networks-based framework for malware detection in Android systems , 2018, Alexandria Engineering Journal.

[19]  Pham Thanh Giang,et al.  NADM: Neural Network for Android Detection Malware , 2018, SoICT.

[20]  Witold Pedrycz,et al.  Dual autoencoders features for imbalance classification problem , 2016, Pattern Recognit..

[21]  Arash Habibi Lashkari,et al.  DIDroid: Android Malware Classification and Characterization Using Deep Image Learning , 2020, ICCNS.

[22]  Bo Yang,et al.  Imbalanced learning based on adaptive weighting and Gaussian function synthesizing with an application on Android malware detection , 2019, Inf. Sci..

[23]  Paul Smolensky,et al.  Information processing in dynamical systems: foundations of harmony theory , 1986 .

[24]  Ali Feizollah,et al.  The Evolution of Android Malware and Android Analysis Techniques , 2017, ACM Comput. Surv..

[25]  Sakir Sezer,et al.  DroidFusion: A Novel Multilevel Classifier Fusion Approach for Android Malware Detection , 2019, IEEE Transactions on Cybernetics.

[26]  Arun Kumar Sangaiah,et al.  Android malware detection based on system call sequences and LSTM , 2019, Multimedia Tools and Applications.

[27]  Lin Wang,et al.  Machine learning based mobile malware detection using highly imbalanced network traffic , 2017, Inf. Sci..

[28]  Xiangyu Zhang,et al.  Plagiarizing Smartphone Applications: Attack Strategies and Defense Techniques , 2012, ESSoS.

[29]  Elisa Bertino,et al.  Detecting mobile malware threats to homeland security through static analysis , 2014, J. Netw. Comput. Appl..

[30]  Muhammad Ajmal Azad,et al.  A First Look at Privacy Analysis of COVID-19 Contact Tracing Mobile Applications , 2020 .

[31]  Brindha Murugan,et al.  Improved real-time permission based malware detection and clustering approach using model independent pruning , 2020, IET Inf. Secur..

[32]  Chang-Dong Wang,et al.  Unsupervised feature selection with multi-subspace randomization and collaboration , 2019, Knowl. Based Syst..

[33]  Francesco Palmieri,et al.  Malware detection in mobile environments based on Autoencoders and API-images , 2020, J. Parallel Distributed Comput..

[34]  Fabio Martinelli,et al.  On the effectiveness of system API-related information for Android ransomware detection , 2018, Comput. Secur..

[35]  Ainuddin Wahid Abdul Wahab,et al.  A review on feature selection in mobile malware detection , 2015, Digit. Investig..

[36]  Sakir Sezer,et al.  DL-Droid: Deep learning based android malware detection using real devices , 2019, Comput. Secur..

[37]  Wei Lee Woon,et al.  Discovering Similarities in Malware Behaviors by Clustering of API Call Sequences , 2018, ICONIP.

[38]  Mauro Conti,et al.  Similarity-based Android Malware Detection Using Hamming Distance of Static Binary Features , 2019, Future Gener. Comput. Syst..

[39]  Abdelouahid Derhab,et al.  MalDozer: Automatic framework for android malware detection using deep learning , 2018, Digit. Investig..

[40]  David Camacho,et al.  Android malware detection through hybrid features fusion and ensemble classifiers: The AndroPyTool framework and the OmniDroid dataset , 2019, Inf. Fusion.

[41]  Yanfang Ye,et al.  HinDroid: An Intelligent Android Malware Detection System Based on Structured Heterogeneous Information Network , 2017, KDD.

[42]  Ankit Kumar Jain,et al.  A machine learning based approach for phishing detection using hyperlinks information , 2018, Journal of Ambient Intelligence and Humanized Computing.

[43]  Liang Du,et al.  Unsupervised feature selection for balanced clustering , 2020, Knowl. Based Syst..

[44]  Mark Stamp,et al.  An analysis of Android adware , 2018, Journal of Computer Virology and Hacking Techniques.

[45]  Christian Igel,et al.  An Introduction to Restricted Boltzmann Machines , 2012, CIARP.