Limb-Bone Scaling Indicates Diverse Stance and Gait in Quadrupedal Ornithischian Dinosaurs

Background The most primitive ornithischian dinosaurs were small bipeds, but quadrupedality evolved three times independently in the clade. The transition to quadrupedality from bipedal ancestors is rare in the history of terrestrial vertebrate evolution, and extant analogues do not exist. Constraints imposed on quadrupedal ornithischians by their ancestral bipedal bauplan remain unexplored, and consequently, debate continues about their stance and gait. For example, it has been proposed that some ornithischians could run, while others consider that none were cursorial. Methodology/Principal Findings Drawing on biomechanical concepts of limb bone scaling and locomotor theory developed for extant taxa, we use the largest dataset of ornithischian postcranial measurements so far compiled to examine stance and gait in quadrupedal ornithischians. Differences in femoral midshaft eccentricity in hadrosaurs and ceratopsids may indicate that hadrosaurs placed their feet on the midline during locomotion, while ceratopsids placed their feet more laterally, under the hips. More robust humeri in the largest ceratopsids relative to smaller taxa may be due to positive allometry in skull size with body mass in ceratopsids, while slender humeri in the largest stegosaurs may be the result of differences in dermal armor distribution within the clade. Hadrosaurs are found to display the most cursorial morphologies of the quadrupedal ornithischian cades, indicating higher locomotor performance than in ceratopsids and thyreophorans. Conclusions/Significance Limb bone scaling indicates that a previously unrealised diversity of stances and gaits were employed by quadrupedal ornithischians despite apparent convergence in limb morphology. Grouping quadrupedal ornithischians together as a single functional group hides this disparity. Differences in limb proportions and scaling are likely due to the possession of display structures such as horns, frills and dermal armor that may have affected the center of mass of the animal, and differences in locomotor behaviour such as migration, predator escape or home range size.

[1]  J. Farlow Estimates of dinosaur speeds from a new trackway site in Texas , 1981, Nature.

[2]  D. Prothero,et al.  Allometry and Paleoecology of Medial Miocene Dwarf Rhinoceroses from the Texas Gulf Coastal Plain , 1982, Paleobiology.

[3]  James Algina,et al.  Parametric ANCOVA and the Rank Transform ANCOVA When the Data are Conditionally Non-Normal and Heteroscedastic , 1984 .

[4]  R. Reisz,et al.  ANATOMY AND RELATIONSHIPS OF LAMBEOSAURUS MAGNICRISTATUS, A CRESTED HADROSAURID DINOSAUR (ORNITHISCHIA) FROM THE DINOSAUR PARK FORMATION, ALBERTA , 2007 .

[5]  D. Naish,et al.  New perspectives on horned dinosaurs: the Royal Tyrrell Museum Ceratopsian Symposium , 2013 .

[6]  T. Garland,et al.  Procedures for the Analysis of Comparative Data Using Phylogenetically Independent Contrasts , 1992 .

[7]  Karl T Bates,et al.  Computational modelling of locomotor muscle moment arms in the basal dinosaur Lesothosaurus diagnosticus: assessing convergence between birds and basal ornithischians , 2012, Journal of anatomy.

[8]  P. Sereno,et al.  New psittacosaurid highlights skull enlargement in homed dinosaurs , 2007 .

[9]  P. Dodson,et al.  The dinosauria: Second edition , 2004 .

[10]  W. Sellers,et al.  Estimating dinosaur maximum running speeds using evolutionary robotics , 2007, Proceedings of the Royal Society B: Biological Sciences.

[11]  M. Brett-Surman,et al.  Discussion of character analysis of the appendicular anatomy in Campanian and Maastrichtian North American hadrosaurids - Variation and ontogeny , 2007 .

[12]  Andrew Rambaut,et al.  Comparative analysis by independent contrasts (CAIC): an Apple Macintosh application for analysing comparative data , 1995, Comput. Appl. Biosci..

[13]  A. Farke,et al.  New Horned Dinosaurs from Utah Provide Evidence for Intracontinental Dinosaur Endemism , 2010, PloS one.

[14]  L. Lanyon,et al.  Chapter 1. Functional Adaptation in Skeletal Structures , 1985 .

[15]  M. Carrano,et al.  Locomotion in non-avian dinosaurs: integrating data from hindlimb kinematics, in vivo strains, and bone morphology , 1998, Paleobiology.

[16]  P. Galton,et al.  THE POSTURE OF HADROSAURIAN DINOSAURS , 1970 .

[17]  P. Barrett,et al.  A new basal iguanodont (Dinosauria: Ornithischia) from the Wealden (Lower Cretaceous) of England , 2010 .

[18]  M. Lockley,et al.  Ceratopsid tracks and associated ichnofauna from the Laramie Formation (Upper Cretaceous: Maastrichtian) of Colorado , 1995 .

[19]  S. Maidment Stegosauria: a historical review of the body fossil record and phylogenetic relationships , 2010 .

[20]  O. C. Marsh Principal characters of American Jurassic dinosaurs, Part V , 1881, American Journal of Science.

[21]  O Hammer-Muntz,et al.  PAST: paleontological statistics software package for education and data analysis version 2.09 , 2001 .

[22]  G. Paul DINOSAUR MODELS : THE GOOD , THE BAD , AND USING THEM TO ESTIMATE THE MASS OF DINOSAURS , 2022 .

[23]  Brent H. Breithaupt,et al.  Dynamics of Dinosaurs and Other Extinct Giants, R. McNeill Alexander, R. McNeill Alexander. Columbia University Press, New York (1989), 167, Price $30.00 , 1990 .

[24]  Kenneth Carpenter,et al.  A New Species of Camptosaurus (Ornithopoda: Dinosauria) from the Morrison Formation (Upper Jurassic) of Dinosaur National Monument, Utah, and a Biomechanical Analysis of Its Forelimb , 2008 .

[25]  P. Senter Analysis of forelimb function in basal ceratopsians , 2007 .

[26]  Theodore Garland,et al.  Does metatarsal/femur ratio predict maximal running speed in cursorial mammals? , 1993 .

[27]  P. Barrett,et al.  Phylogeny of the ankylosaurian dinosaurs (Ornithischia: Thyreophora) , 2012 .

[28]  M. Ryan,et al.  New Perspectives on Horned Dinosaurs , 2010 .

[29]  E. H. Colbert The Weights of Dinosaurs , 2004 .

[30]  R. Holmes,et al.  The first complete description of the holotype of Brachylophosaurus canadensis Sternberg, 1953 (Dinosauria: Hadrosauridae) with comments on intraspecific variation , 2010 .

[31]  R. Serlin,et al.  An empirical study of a proposed test of nonparametric analysis of covariance. , 1988 .

[32]  A. Biewener,et al.  Experimental alteration of limb posture in the chicken (Gallus gallus) and its bearing on the use of birds as analogs for dinosaur locomotion , 1999, Journal of morphology.

[33]  Ornithischian Dinosaur,et al.  ON THE ORNITHISCHIAN DINOSAUR IGUANODON BERNISSARTENSIS FROM THE LOWER CRETACEOUS OF BERNISSART ( BELGIUM ) , 2013 .

[34]  O. C. Marsh Principal characters of American Jurassic dinosaurs, IV , 1881, American Journal of Science.

[35]  P. Sereno Taxonomy, Cranial Morphology, and Relationships of Parrot-Beaked Dinosaurs (Ceratopsia: Psittacosaurus) , 2010 .

[36]  John R. Hutchinson,et al.  Adductors, abductors, and the evolution of archosaur locomotion , 2000, Paleobiology.

[37]  R. M. Alexander,et al.  Walking and running , 1984, The Mathematical Gazette.

[38]  Mariano Garcia,et al.  Tyrannosaurus was not a fast runner , 2002, Nature.

[39]  Paul C. Sereno,et al.  Early Evolution and Higher-Level Phylogeny of Sauropod Dinosaurs , 1998 .

[40]  P. Christiansen Locomotion in terrestrial mammals: the influence of body mass, limb length and bone proportions on speed , 2002 .

[41]  Clint A. Boyd,et al.  A new basal ornithopod dinosaur (Frenchman Formation, Saskatchewan, Canada), and implications for late Maastrichtian ornithischian diversity in North America , 2011 .

[42]  D. Bramble,et al.  Functional vertebrate morphology , 1985 .

[43]  R. Alexander,et al.  Estimates of speeds of dinosaurs , 1976, Nature.

[44]  R. Bakker Dinosaur feeding behaviour and the origin of flowering plants , 1978, Nature.

[45]  P. Upchurch The phylogenetic relationships of sauropod dinosaurs , 1998 .

[46]  F. Rohlf Paleontological Data Analysis , 2007 .

[47]  J. Felsenstein Phylogenies and the Comparative Method , 1985, The American Naturalist.

[48]  M. Carrano,et al.  Titanosaurs and the origin of “wide-gauge” trackways: a biomechanical and systematic perspective on sauropod locomotion , 1999, Paleobiology.

[49]  P. Upchurch,et al.  The phylogeny of the ornithischian dinosaurs , 2008 .

[50]  W. Coombs,et al.  Theoretical Aspects of Cursorial Adaptations in Dinosaurs , 1978, The Quarterly Review of Biology.

[51]  A. Prieto-mÁrquez Postcranial osteology of the hadrosaurian dinosaur Brachylophosaurus canadensis from the Late Cretaceous of Montana , 2007 .

[52]  A. Prieto-mÁrquez,et al.  Global phylogeny of Hadrosauridae (Dinosauria: Ornithopoda) using parsimony and Bayesian methods , 2010 .

[53]  J. H. Ostrom A reconsideration of the paleoecology of hadrosaurian dinosaurs , 1964 .

[54]  C. Janis,et al.  Were there mammalian pursuit predators in the tertiary? Dances with wolf avatars , 1993, Journal of Mammalian Evolution.

[55]  R. M. Alexander,et al.  Mechanics of posture and gait of some large dinosaurs , 1985 .

[56]  K. Carpenter,et al.  Mesozoic vertebrate life , 2001 .

[57]  M. Carrano What, if anything, is a cursor? Categories versus continua for determining locomotor habit in mammals and dinosaurs , 1999 .

[58]  P. Sereno Lesothosaurus, “Fabrosaurids,” and the early evolution of Ornithischia , 1991 .

[59]  Matthew F. Bonnan THE EVOLUTION OF MANUS SHAPE IN SAUROPOD DINOSAURS: IMPLICATIONS FOR FUNCTIONAL MORPHOLOGY, FORELIMB ORIENTATION, AND PHYLOGENY , 2003 .

[60]  Time-Life Books,et al.  WALKING AND RUNNING. , 1885, Science.

[61]  R. Butler The anatomy of the basal ornithischian dinosaur Eocursor parvus from the lower Elliot Formation (Late Triassic) of South Africa , 2010 .

[62]  A. Biewener Scaling body support in mammals: limb posture and muscle mechanics. , 1989, Science.

[63]  T. H. Eaton Modifications of the shoulder girdle related to reach and stride in mammals , 1944 .

[64]  P. Galton British plated dinosaurs (Ornithischia, Stegosauridae) , 1985 .

[65]  Ø. Hammer,et al.  PAST: PALEONTOLOGICAL STATISTICAL SOFTWARE PACKAGE FOR EDUCATION AND DATA ANALYSIS , 2001 .

[66]  P. Upchurch,et al.  A phylogenetic analysis of basal sauropodomorph relationships: Implications for the origin of sauropod dinosaurs2 , 2007 .

[67]  Paul Upchurch,et al.  Biomechanics: Dinosaur locomotion from a new trackway , 2002, Nature.

[68]  R. Holmes,et al.  FORELIMB STANCE AND STEP CYCLE IN CHASMOSAURUS IRVINENESIS (DINOSAURIA: NEOCERATOPSIA) , 2007 .

[69]  J. Bertram,et al.  Differential scaling of the long bones in the terrestrial carnivora and other mammals , 1990, Journal of morphology.

[70]  William I. Sellers,et al.  Virtual palaeontology: Gait reconstruction of extinct vertebrates using high performance computing , 2009 .

[71]  P. Christiansen Mass allometry of the appendicular skeleton in terrestrial mammals , 2002, Journal of morphology.

[72]  D. Henderson,et al.  Estimating the masses and centers of mass of extinct animals by 3-D mathematical slicing , 1999, Paleobiology.

[73]  D. Dilkes,et al.  An ontogenetic perspective on locomotion in the Late Cretaceous dinosaur Maiasaura peeblesorum (Ornithischia: Hadrosauridae) , 2001 .

[74]  Xing(徐星) Xu,et al.  A New Leptoceratopsid (Ornithischia: Ceratopsia) from the Upper Cretaceous of Shandong, China and Its Implications for Neoceratopsian Evolution , 2010, PloS one.

[75]  P. Christiansen Scaling of mammalian long bones: small and large mammals compared , 1999 .

[76]  M. Carrano,et al.  Implications of limb bone scaling, curvature and eccentricity in mammals and non‐avian dinosaurs , 2001 .

[77]  J. Ogg,et al.  The Concise Geologic Time Scale , 2008 .

[78]  E. Martins The Comparative Method in Evolutionary Biology, Paul H. Harvey, Mark D. Pagel. Oxford University Press, Oxford (1991), vii, + 239 Price $24.95 paperback , 1992 .

[79]  R. McN. Alexander,et al.  Allometry of the limb bones of mammals from shrews (Sorex) to elephant (Loxodonta) , 2009 .