Parallel implicit anisotropic block-based adaptive mesh refinement finite-volume scheme for the study of fully resolved oblique shock wave reflections

A new parallel, fully implicit, anisotropic block-based adaptive mesh refinement (AMR) finite-volume scheme is proposed, described and demonstrated for the prediction of laminar, compressible, viscous flows associated with unsteady oblique shock reflection processes. The proposed finite-volume method provides numerical solutions to the Navier–Stokes equations governing the flow of polytropic gases in an accurate and efficient manner on two-dimensional, body-fitted, multi-block meshes consisting of quadrilateral computational cells. The combination of the anisotropic AMR and parallel implicit time-marching techniques adopted is shown to readily facilitate the simulation of challenging and complex shock interaction problems, as represented by the time-accurate predictions of unsteady oblique shock reflection configurations with fully resolved internal shock structures.

[1]  P. Colella,et al.  Numerical modelling of inviscid shocked flows of real gases , 1982 .

[2]  L. F. Henderson,et al.  The wall-jetting effect in Mach reflection: theoretical consideration and numerical investigation , 2003, Journal of Fluid Mechanics.

[3]  Y. Saad,et al.  GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .

[4]  P. Colella,et al.  A cartesian grid embedded boundary method for the compressible Navier–Stokes equations , 2013 .

[5]  I. I. Glass,et al.  A numerical study of oblique shock-wave reflections with experimental comparisons , 1985, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[6]  G. Golub,et al.  Gmres: a Generalized Minimum Residual Algorithm for Solving , 2022 .

[7]  D. D. Zeeuw,et al.  An adaptively refined Cartesian mesh solver for the Euler equations , 1993 .

[8]  Phillip Colella,et al.  An Adaptive Semi-Implicit Scheme for Simulations of Unsteady Viscous Compressible Flows , 1995 .

[9]  James J. Quirk,et al.  A Parallel Adaptive Mesh Refinement Algorithm , 1993 .

[10]  Gabi Ben-Dor,et al.  The wall-jetting effect in Mach reflection: Navier–Stokes simulations , 2004, Journal of Fluid Mechanics.

[11]  Ralph Arnote,et al.  Hong Kong (China) , 1996, OECD/G20 Base Erosion and Profit Shifting Project.

[12]  Clinton P. T. Groth,et al.  Parallel Adaptive Mesh Refinement Scheme for Turbulent Non-Premixed Combusting Flow Prediction , 2006 .

[13]  Kazuyoshi Takayama,et al.  Conservative Smoothing on an Adaptive Quadrilateral Grid , 1999 .

[14]  Clinton P. T. Groth,et al.  International Journal of Computational Fluid Dynamics a Parallel Adaptive Mesh Refinement Algorithm for Predicting Turbulent Non-premixed Combusting Flows a Parallel Adaptive Mesh Refinement Algorithm for Predicting Turbulent Non-premixed Combusting Flows , 2022 .

[15]  P. Woodward,et al.  The numerical simulation of two-dimensional fluid flow with strong shocks , 1984 .

[16]  P. Colella,et al.  Local adaptive mesh refinement for shock hydrodynamics , 1989 .

[17]  W. Durand,et al.  Aerodynamic theory : a general review of progress , 1963 .

[18]  Philip L. Roe,et al.  Adaptive-mesh algorithms for computational fluid dynamics , 1993 .

[19]  J. Gottlieb,et al.  Shock Transition Solutions of Navier-Stokes Equations with Volume Viscosity for Nitrogen and Air , 2015 .

[20]  Tatiana G. Elizarova,et al.  Numerical simulation of shock wave structure in nitrogen , 2007 .

[21]  Scott Northrup,et al.  Parallel Implicit Adaptive Mesh Refinement for Unsteady Fully-Compressible Reactive Flows , 2013 .

[22]  J. Ivey,et al.  Ann Arbor, Michigan , 1969 .

[23]  E. Timofeev,et al.  An Efficient Unstructured Euler Solver for Transient Shocked Flows , 1995 .

[24]  Phillip Colella,et al.  Numerical calculation of complex shock reflections in gases , 1985 .

[25]  L. F. Henderson,et al.  The persistence of regular reflection during strong shock diffraction over rigid ramps , 2001, Journal of Fluid Mechanics.

[26]  Scott Northrup,et al.  Parallel Implicit Adaptive Mesh Refinement Scheme for Body-Fitted Multi-Block Mesh , 2005 .

[27]  K. Powell,et al.  Solution-Adaptive Cartesian Cell Approach for Viscous and Inviscid Flows , 1996 .

[28]  P. Colella,et al.  Nonequilibrium effects in oblique shock-wave reflection , 1988 .

[29]  David W. Zingg,et al.  Efficient Implicit Time-Marching Methods Using a Newton-Krylov Algorithm , 2009 .

[30]  I. Bohachevsky,et al.  Finite difference method for numerical computation of discontinuous solutions of the equations of fluid dynamics , 1959 .

[31]  Erlendur Steinthorsson,et al.  Computations of Unsteady Viscous Compressible Flows Using Adaptive Mesh Refinement in Curvilinear Body-fitted Grid Systems , 1994 .

[32]  V. Venkatakrishnan On the accuracy of limiters and convergence to steady state solutions , 1993 .

[33]  L. F. Henderson,et al.  The effects of thermal conductivity and viscosity of argon on shock waves diffracting over rigid ramps , 1997, Journal of Fluid Mechanics.

[34]  Marsha J. Berger,et al.  AMR on the CM-2 , 1994 .

[35]  J. Sachdev,et al.  A parallel solution-adaptive scheme for multi-phase core flows in solid propellant rocket motors , 2005 .

[36]  M. Berger,et al.  Adaptive mesh refinement for hyperbolic partial differential equations , 1982 .

[37]  P. Lax,et al.  On Upstream Differencing and Godunov-Type Schemes for Hyperbolic Conservation Laws , 1983 .

[38]  Satoshi Hamada,et al.  In press 1 , 2016 .

[39]  A. Kudryavtsev,et al.  Viscous Effects in Steady Reflection of Strong Shock Waves , 2009 .

[40]  A. Kudryavtsev,et al.  Viscosity effects on weak irregular reflection of shock waves in steady flow , 2009 .

[41]  Bernd Einfeld On Godunov-type methods for gas dynamics , 1988 .

[42]  L. F. Henderson,et al.  The von Neumann paradox for the diffraction of weak shock waves , 1990, Journal of Fluid Mechanics.

[43]  G. Taylor,et al.  The Mechanics of Compressible Fluids , 1935 .

[44]  E. Timofeev,et al.  High-resolution schemes and unstructured grids in transient shocked flow simulation , 1993 .

[45]  Sanford Gordon,et al.  Computer program for calculation of complex chemical equilibrium compositions , 1972 .

[46]  David W. Zingg,et al.  A Runge-Kutta-Newton-Krylov Algorithm for Fourth-Order Implicit Time Marching Applied to Unsteady Flows , 2004 .

[47]  E. Timofeev,et al.  Numerical simulation of shock wave interactions with channel bends and gas nonuniformities , 1992 .

[48]  Clinton P. T. Groth,et al.  Parallel High-Order Anisotropic Block-Based Adaptive Mesh Refinement Finite-Volume Scheme , 2011 .

[49]  L. F. Henderson,et al.  Experiments on the diffraction of strong blast waves , 1981, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[50]  Scott Northrup,et al.  Solution of Laminar Diffusion Flames Using a Parallel Adaptive Mesh Refinement Algorithm , 2005 .

[51]  J. Gottlieb,et al.  Parallel AMR Scheme for Turbulent Multi-Phase Rocket Motor Core Flows , 2005 .

[52]  A. Jameson Time dependent calculations using multigrid, with applications to unsteady flows past airfoils and wings , 1991 .

[53]  Dimitris Drikakis,et al.  Computation of non-stationary shock-wave/cylinder interaction using adaptive-grid methods , 1997 .

[54]  Quentin F. Stout,et al.  A parallel solution-adaptive scheme for ideal magnetohydrodynamics , 1999 .