The effect of iron on the adsorption properties of CuMnZrO2 catalysts studied by temperature-programmed desorption and FTIR spectroscopy

[1]  Yuhan Sun,et al.  Influence of promoter on catalytic properties of Cu-Mn-Fe/ZrO2 catalysts for alcohols synthesis , 2004 .

[2]  Yuhan Sun,et al.  Cu/Mn/ZrO2 catalyst for alcohol synthesis by Fischer-Tropsch modified elements , 2002 .

[3]  K. Fujimoto,et al.  Different functions of the noble metals added to cobalt catalysts for Fischer-Tropsch synthesis , 2001 .

[4]  D. Bianchi,et al.  Heat of Adsorption of Carbon Monoxide on a Pt/Rh/CeO2/Al2O3Three-Way Catalyst Usingin-SituInfrared Spectroscopy at High Temperatures , 1998 .

[5]  A. Bell,et al.  In Situ Infrared Study of Methanol Synthesis from H2/CO over Cu/SiO2and Cu/ZrO2/SiO2 , 1997 .

[6]  A. Wokaun,et al.  Surface Species in CO and CO2 Hydrogenation over Copper/Zirconia: On the Methanol Synthesis Mechanism , 1996 .

[7]  A. Bell,et al.  Infrared Studies of the Mechanism of Methanol Decomposition on Cu/SiO2 , 1994 .

[8]  D. Bianchi,et al.  Intermediate species on zirconia supported methanol aerogel catalysts. III: Adsorption of carbon monoxide on copper containing solids , 1994 .

[9]  D. Bianchi,et al.  Intermediate species on zirconia supported methanol aerogel catalysts: II. Adsorption of carbon monoxide on pure zirconia and on zirconia containing zinc oxide , 1993 .

[10]  J. Mol,et al.  Temperature-programmed desorption study on supported copper-containing methanol synthesis catalysts , 1993 .

[11]  C. Serre,et al.  Reactivity of Pt/Al2O3 and Pt-CeO2Al2O3 Catalysts for the Oxidation of Carbon Monoxide by Oxygen: I. Catalyst Characterization by TPR Using CO as Reducing Agent , 1993 .

[12]  A. Kiennemann,et al.  Mechanistic Aspects of the Formation of Hydrocarbons and Alcohols from CO Hydrogenation , 1993 .

[13]  G. Froment,et al.  Methanol synthesis by means of diffuse reflectance infrared Fourier transform and temperature-programmed reaction spectroscopy , 1992 .

[14]  G. Chinchen,et al.  Sensitive and insensitive reactions on copper catalysts: the water-gas shift reaction and methanol synthesis from carbon dioxide , 1991 .

[15]  A. Wokaun,et al.  On the mechanism of CO and CO2 hydrogenation reactions on zirconia-supported catalysts: a diffuse reflectance FTIR study: Part I. Identification of surface species and methanation reactions on palladium/zirconia catalysts , 1990 .

[16]  A. Wokaun,et al.  On the mechanism of CO and CO2 hydrogenation reactions on zirconia-supported catalysts: a diffuse reflectance FTIR study , 1990 .

[17]  A. Kiennemann,et al.  Higher alcohols synthesis from CO+2H2 on cobalt—copper catalyst: Use of probe molecules and chemical trapping in the study of the reaction mechanism , 1989 .

[18]  Ta-Jen Huang,et al.  Effect of calcination atmosphere on CuO/γ-Al2O3 catalyst for carbon monoxide oxidation , 1989 .

[19]  W. M. Ayers Catalytic activation of carbon dioxide , 1988 .

[20]  M. Bowker,et al.  The mechanism of methanol synthesis on copper/zinc oxide/alumina catalysts , 1988 .

[21]  R. Burch,et al.  Support and morphological effects in the synthesis of methanol over Cu/ZnO, Cu/ZrO2 and Cu/SiO2 catalysts , 1988 .

[22]  X. Xiaoding,et al.  Synthesis of higher alcohols from syngas - recently patented catalysts and tentative ideas on the mechanism , 1987 .

[23]  M. Vannice,et al.  Carbon-supported FeMn and KFeMn clusters for the synthesis of C2C4 olefins from CO and H2: I. Chemisorption and catalytic behavior , 1987 .

[24]  J. W. Evans,et al.  On the determination of copper surface area by reaction with nitrous oxide , 1983 .

[25]  J. Anderson,et al.  On the reduction of supported iron catalysts studied by Mössbauer spectroscopy , 1975 .