A neural approach to unsupervised classification of very-high resolution polarimetric SAR data
暂无分享,去创建一个
Fabio Del Frate | Domenico Solimini | Giovanni Schiavon | Marco Del Greco | Alessandro Burini | Cosimo Putignano
[1] Teuvo Kohonen,et al. Self-Organizing Maps , 2010 .
[2] F. Mörchen,et al. ESOM-Maps : tools for clustering , visualization , and classification with Emergent SOM , 2005 .
[3] Ralf Horn. BACCHUS-DOC Radar and Optical Campaign - Data Acquisition Report , 2005 .
[4] Dirk H. Hoekman,et al. Initialization of Markov Random Field clustering of large polarimetric SAR images , 2004, IGARSS 2004. 2004 IEEE International Geoscience and Remote Sensing Symposium.
[5] Eric Pottier,et al. SAR Polarimetry and applications. , 2005 .
[6] Domenico Solimini,et al. Self-organizing Neural Networks for Unsupervised Classification of Polarimetric SAR Data on Complex Landscapes , 2006, 2006 IEEE International Symposium on Geoscience and Remote Sensing.
[7] Eric Pottier,et al. An entropy based classification scheme for land applications of polarimetric SAR , 1997, IEEE Trans. Geosci. Remote. Sens..
[8] Thomas L. Ainsworth,et al. Unsupervised classification using polarimetric decomposition and the complex Wishart classifier , 1999, IEEE Trans. Geosci. Remote. Sens..
[9] Ralf Horn. BACCHUS-DOC Radar and Optical Campaign - Experiment Plan , 2005 .
[10] L. Ferro-Famil,et al. Unsupervised classification of multi-frequency and fully polarimetric SAR images based on the H/A/Alpha-Wishart classifier , 2000, IGARSS 2000. IEEE 2000 International Geoscience and Remote Sensing Symposium. Taking the Pulse of the Planet: The Role of Remote Sensing in Managing the Environment. Proceedings (Cat. No.00CH37120).