A neural approach to unsupervised classification of very-high resolution polarimetric SAR data

Analysis of L-band polarimetric SAR data has not been extensively carried out for undulating, heterogeneous and fragmented landscapes, where classification can become quite challenging. This paper reports results of a study on the pixel-by- pixel unsupervised classification of very-high resolution polarimetric images by self-organizing neural networks.

[1]  Teuvo Kohonen,et al.  Self-Organizing Maps , 2010 .

[2]  F. Mörchen,et al.  ESOM-Maps : tools for clustering , visualization , and classification with Emergent SOM , 2005 .

[3]  Ralf Horn BACCHUS-DOC Radar and Optical Campaign - Data Acquisition Report , 2005 .

[4]  Dirk H. Hoekman,et al.  Initialization of Markov Random Field clustering of large polarimetric SAR images , 2004, IGARSS 2004. 2004 IEEE International Geoscience and Remote Sensing Symposium.

[5]  Eric Pottier,et al.  SAR Polarimetry and applications. , 2005 .

[6]  Domenico Solimini,et al.  Self-organizing Neural Networks for Unsupervised Classification of Polarimetric SAR Data on Complex Landscapes , 2006, 2006 IEEE International Symposium on Geoscience and Remote Sensing.

[7]  Eric Pottier,et al.  An entropy based classification scheme for land applications of polarimetric SAR , 1997, IEEE Trans. Geosci. Remote. Sens..

[8]  Thomas L. Ainsworth,et al.  Unsupervised classification using polarimetric decomposition and the complex Wishart classifier , 1999, IEEE Trans. Geosci. Remote. Sens..

[9]  Ralf Horn BACCHUS-DOC Radar and Optical Campaign - Experiment Plan , 2005 .

[10]  L. Ferro-Famil,et al.  Unsupervised classification of multi-frequency and fully polarimetric SAR images based on the H/A/Alpha-Wishart classifier , 2000, IGARSS 2000. IEEE 2000 International Geoscience and Remote Sensing Symposium. Taking the Pulse of the Planet: The Role of Remote Sensing in Managing the Environment. Proceedings (Cat. No.00CH37120).