Integrating predictive analytics into a spatiotemporal epidemic simulation

The Epidemic Simulation System (EpiSimS) is a scalable, complex modeling tool for analyzing disease within the United States. Due to its high input dimensionality, time requirements, and resource constraints, simulating over the entire parameter space is unfeasible. One solution is to take a granular sampling of the input space and use simpler predictive models (emulators) in between. The quality of the implemented emulator depends on many factors: robustness, sophistication, configuration, and suitability to the input data. Visual analytics can be leveraged to provide guidance and understanding of these things to the user. In this paper, we have implemented a novel interface and workflow for emulator building and use. We introduce a workflow to build emulators, make predictions, and then analyze the results. Our prediction process first predicts temporal time series, and uses these to derive predicted spatial densities. Integrated into the EpiSimS framework, we target users who are non-experts at statistical modeling. This approach allows for a high level of analysis into the state of the built emulators and their resultant predictions. We present our workflow, models, the associated system, and evaluate the overall utility with feedback from EpiSimS scientists.

[1]  Clifford M. Hurvich,et al.  Regression and time series model selection in small samples , 1989 .

[2]  David R. Anderson,et al.  Multimodel Inference , 2004 .

[3]  J. Neyman Outline of a Theory of Statistical Estimation Based on the Classical Theory of Probability , 1937 .

[4]  Chandler Stolp,et al.  The Visual Display of Quantitative Information , 1983 .

[5]  Alan M. MacEachren,et al.  Geographic visualization: designing manipulable maps for exploring temporally varying georeferenced statistics , 1998, Proceedings IEEE Symposium on Information Visualization (Cat. No.98TB100258).

[6]  Phillip D. Stroud,et al.  Pandemic simulation of antivirals + school closures: buying time until strain-specific vaccine is available , 2008, Comput. Math. Organ. Theory.

[7]  Jarke J. van Wijk,et al.  Preset based interaction with high dimensional parameter spaces , 2003, Data Visualization: The State of the Art.

[8]  Naohisa Sakamoto,et al.  Visual Analysis of Habitat Suitability Index Model for Predicting the Locations of Fishing Grounds , 2014, 2014 IEEE Pacific Visualization Symposium.

[9]  Debora MacKenzie Threatwatch: Chikungunya virus spreads in the Americas , 2013 .

[10]  Diansheng Guo,et al.  Visual analytics of spatial interaction patterns for pandemic decision support , 2007, Int. J. Geogr. Inf. Sci..

[11]  Hans-Christian Hege,et al.  Tuner: Principled Parameter Finding for Image Segmentation Algorithms Using Visual Response Surface Exploration , 2011, IEEE Transactions on Visualization and Computer Graphics.

[12]  Susan M. Mniszewski,et al.  Understanding the Impact of Face Mask Usage Through Epidemic Simulation of Large Social Networks , 2013, Theories and Simulations of Complex Social Systems.

[13]  John J. Grefenstette,et al.  FRED Navigator: An interactive system for visualizing results from large-scale epidemic simulations , 2012, 2012 IEEE 8th International Conference on E-Science.

[14]  Bernard W. Silverman,et al.  Density Estimation for Statistics and Data Analysis , 1987 .

[15]  Stefan Bruckner,et al.  Visual Parameter Space Analysis: A Conceptual Framework , 2014, IEEE Transactions on Visualization and Computer Graphics.

[16]  Zhien Ma,et al.  A predator-prey model with infected prey. , 2004, Theoretical population biology.

[17]  R. Dennis Cook,et al.  Detection of Influential Observation in Linear Regression , 2000, Technometrics.

[18]  Edward R. Tufte,et al.  The Visual Display of Quantitative Information , 1986 .

[19]  David S. Ebert,et al.  A pandemic influenza modeling and visualization tool☆ , 2011, Journal of Visual Languages & Computing.

[20]  Richard L. Smith,et al.  PREDICTIVE INFERENCE , 2004 .

[21]  Doris Dransch,et al.  A Visual Analysis Concept for the Validation of Geoscientific Simulation Models , 2012, IEEE Transactions on Visualization and Computer Graphics.

[22]  Richard J. Beckman,et al.  A Comparison of Three Methods for Selecting Values of Input Variables in the Analysis of Output From a Computer Code , 2000, Technometrics.

[23]  David S. Ebert,et al.  Visual analytics decision support environment for epidemic modeling and response evaluation , 2011, 2011 IEEE Conference on Visual Analytics Science and Technology (VAST).

[24]  M. D. McKay,et al.  A comparison of three methods for selecting values of input variables in the analysis of output from a computer code , 2000 .

[25]  Alessandro Vespignani,et al.  The GLEaMviz computational tool, a publicly available software to explore realistic epidemic spreading scenarios at the global scale , 2011, BMC infectious diseases.

[26]  Phillip D. Stroud,et al.  EpiSimS simulation of a multi-component strategy for pandemic influenza , 2008, SpringSim '08.

[27]  Chris Bryan,et al.  Towards a hybrid agent-based model for mosquito borne disease , 2014, SummerSim.

[28]  Hans-Jörg Schulz,et al.  Supporting the integrated visual analysis of input parameters and simulation trajectories , 2014, Comput. Graph..

[29]  Landon Fridman Detwiler,et al.  Visualization and analytics tools for infectious disease epidemiology: A systematic review , 2014, J. Biomed. Informatics.

[30]  Andrew Mercer,et al.  Noodles: A Tool for Visualization of Numerical Weather Model Ensemble Uncertainty , 2010, IEEE Transactions on Visualization and Computer Graphics.

[31]  Peter Filzmoser,et al.  Uncertainty‐Aware Exploration of Continuous Parameter Spaces Using Multivariate Prediction , 2011, Comput. Graph. Forum.

[32]  Terry A. Slocum,et al.  A Qualitative Evaluation of MapTime, A Program For Exploring Spatiotemporal Point Data , 2004, Cartogr. Int. J. Geogr. Inf. Geovisualization.

[33]  Eser Kandogan Star Coordinates: A Multi-dimensional Visualization Technique with Uniform Treatment of Dimensions , 2000 .

[34]  Phillip D. Stroud,et al.  Spatial Dynamics of Pandemic Influenza in a Massive Artificial Society , 2007, J. Artif. Soc. Soc. Simul..

[35]  B. Silverman Density estimation for statistics and data analysis , 1986 .

[36]  Wolfgang Berger,et al.  Eurographics/ Ieee-vgtc Symposium on Visualization 2010 Hypermoval: Interactive Visual Validation of Regression Models for Real-time Simulation , 2022 .

[37]  Valerio Pascucci,et al.  Ensemble-Vis: A Framework for the Statistical Visualization of Ensemble Data , 2009, 2009 IEEE International Conference on Data Mining Workshops.

[38]  David S. Ebert,et al.  Proactive Spatiotemporal Resource Allocation and Predictive Visual Analytics for Community Policing and Law Enforcement , 2014, IEEE Transactions on Visualization and Computer Graphics.

[39]  Jonathan C. Roberts,et al.  epSpread - Storyboarding for visual analytics , 2011, 2011 IEEE Conference on Visual Analytics Science and Technology (VAST).

[40]  Steve Kelling,et al.  BirdVis: Visualizing and Understanding Bird Populations , 2011, IEEE Transactions on Visualization and Computer Graphics.

[41]  Harald Piringer,et al.  A Partition-Based Framework for Building and Validating Regression Models , 2013, IEEE Transactions on Visualization and Computer Graphics.

[42]  Ryan Hafen,et al.  A Visual Analytics Approach to Understanding Spatiotemporal Hotspots , 2010, IEEE Transactions on Visualization and Computer Graphics.