Convergence results for some piecewise linear solvers

Let $A$ be a real $n\times n$ matrix and $z,b\in \mathbb R^n$. The piecewise linear equation system $z-A\vert z\vert = b$ is called an \textit{absolute value equation}. We consider two solvers for this problem, one direct, one semi-iterative, and extend their previously known ranges of convergence.

[1]  Olvi L. Mangasarian,et al.  Absolute value equation solution via concave minimization , 2006, Optim. Lett..

[2]  Olvi L. Mangasarian,et al.  Absolute Value Equation Solution Via Linear Programming , 2013, Journal of Optimization Theory and Applications.

[3]  Olvi L. Mangasarian,et al.  Absolute value programming , 2007, Comput. Optim. Appl..

[4]  O. Mangasarian,et al.  Absolute value equations , 2006 .

[5]  J. Rohn Systems of linear interval equations , 1989 .

[6]  Andreas Griewank,et al.  Representation and Analysis of Piecewise Linear Functions in Abs-Normal Form , 2013, System Modelling and Optimization.

[7]  H. Wielandt Unzerlegbare, nicht negative Matrizen , 1950 .

[8]  Luigi Brugnano,et al.  Iterative Solution of Piecewise Linear Systems , 2007, SIAM J. Sci. Comput..

[9]  Siegfried M. Rump,et al.  Perron–Frobenius theory for complex matrices , 2003 .

[10]  A. Griewank,et al.  Solving piecewise linear systems in abs-normal form , 2015, 1701.00753.

[11]  Manuel Radons,et al.  Direct solution of piecewise linear systems , 2016, Theor. Comput. Sci..

[12]  Milan Hladík,et al.  A new concave minimization algorithm for the absolute value equation solution , 2021, Optimization Letters.

[13]  Shuicheng Yan,et al.  Nondegenerate Piecewise Linear Systems: A Finite Newton Algorithm and Applications in Machine Learning , 2012, Neural Computation.

[14]  Manuel Radons,et al.  $$\mathcal O(n)$$O(n) working precision inverses for symmetric tridiagonal Toeplitz matrices with $$\mathcal O(1)$$O(1) floating point calculations , 2016, Optim. Lett..

[15]  Andreas Griewank,et al.  Piecewise linear secant approximation via algorithmic piecewise differentiation , 2017, Optim. Methods Softw..

[16]  Carl D. Meyer,et al.  Matrix Analysis and Applied Linear Algebra , 2000 .

[17]  S. Rump THEOREMS OF PERRON-FROBENIUS TYPE FOR MATRICES WITHOUT SIGN RESTRICTIONS , 1997 .

[18]  Qiong Zhang,et al.  A generalized Newton method for absolute value equations associated with second order cones , 2011, J. Comput. Appl. Math..

[19]  Lin Zheng The Picard-HSS-SOR iteration method for absolute value equations , 2020 .

[20]  M. Bartlett An Inverse Matrix Adjustment Arising in Discriminant Analysis , 1951 .

[21]  A. Neumaier Interval methods for systems of equations , 1990 .

[22]  Olvi L. Mangasarian,et al.  A generalized Newton method for absolute value equations , 2009, Optim. Lett..