Gradient-based iterative parameter estimation for Box-Jenkins systems

This paper presents a gradient-based iterative identification algorithms for Box-Jenkins systems with finite measurement input/output data. Compared with the pseudo-linear regression stochastic gradient approach, the proposed algorithm updates the parameter estimation using all the available data at each iterative computation (at each iteration), and thus can produce highly accurate parameter estimation. An example is given.

[1]  Feng Ding,et al.  Hierarchical least squares identification methods for multivariable systems , 2005, IEEE Trans. Autom. Control..

[2]  Feng Ding,et al.  Gradient-Based Identification Methods for Hammerstein Nonlinear ARMAX Models , 2006 .

[3]  F. Ding,et al.  On consistency of recursive least squares identification algorithms for controlled auto-regression models ☆ , 2008 .

[4]  Feng Ding,et al.  Auxiliary model-based RELS and MI-ELS algorithm for Hammerstein OEMA systems , 2010, Comput. Math. Appl..

[5]  Feng Ding,et al.  Performance analysis of the auxiliary models based multi-innovation stochastic gradient estimation algorithm for output error systems , 2010, Digit. Signal Process..

[6]  Feng Ding,et al.  Auxiliary model identification method for multirate multi-input systems based on least squares , 2009, Math. Comput. Model..

[7]  Feng Ding,et al.  Auxiliary model based recursive generalized least squares parameter estimation for Hammerstein OEAR systems , 2010, Math. Comput. Model..

[8]  Jing Lu,et al.  Least squares based iterative identification for a class of multirate systems , 2010, Autom..

[9]  Tongwen Chen,et al.  Identification of dual‐rate systems based on finite impulse response models , 2004 .

[10]  Feng Ding,et al.  Parameter estimation of dual-rate stochastic systems by using an output error method , 2005, IEEE Trans. Autom. Control..

[11]  Feng Ding,et al.  Performance analysis of multi-innovation gradient type identification methods , 2007, Autom..

[12]  Feng Ding,et al.  Input-output data filtering based recursive least squares identification for CARARMA systems , 2010, Digit. Signal Process..

[13]  Feng Ding,et al.  Computers and Mathematics with Applications Identification for Multirate Multi-input Systems Using the Multi-innovation Identification Theory , 2022 .

[14]  Feng Ding,et al.  Performance analysis of estimation algorithms of nonstationary ARMA processes , 2006, IEEE Transactions on Signal Processing.

[15]  Feng Ding,et al.  Computers and Mathematics with Applications the Residual Based Extended Least Squares Identification Method for Dual-rate Systems , 2022 .

[16]  Feng Ding,et al.  Identification of Hammerstein nonlinear ARMAX systems , 2005, Autom..

[17]  Feng Ding,et al.  Auxiliary model based multi-innovation extended stochastic gradient parameter estimation with colored measurement noises , 2009, Signal Process..

[18]  Andrew H. Jazwinski,et al.  Adaptive filtering , 1969, Autom..

[19]  Lennart Ljung,et al.  System Identification: Theory for the User , 1987 .

[20]  Feng Ding,et al.  Extended stochastic gradient identification algorithms for Hammerstein-Wiener ARMAX systems , 2008, Comput. Math. Appl..

[21]  O. Nazarenko,et al.  PARAMETRIC IDENTIFICATION OF STATE-SPACE DYNAMIC SYSTEMS: A TIME-DOMAIN PERSPECTIVE , 2008 .

[22]  Feng Ding,et al.  Self-tuning control based on multi-innovation stochastic gradient parameter estimation , 2009, Syst. Control. Lett..

[23]  Feng Ding,et al.  Reconstruction of continuous-time systems from their non-uniformly sampled discrete-time systems , 2009, Autom..

[24]  Feng Ding,et al.  Auxiliary model-based least-squares identification methods for Hammerstein output-error systems , 2007, Syst. Control. Lett..

[25]  Feng Ding,et al.  Hierarchical gradient-based identification of multivariable discrete-time systems , 2005, Autom..

[26]  Feng Ding,et al.  Multi-innovation stochastic gradient algorithms for multi-input multi-output systems , 2009, Digit. Signal Process..

[27]  Graham C. Goodwin,et al.  Adaptive filtering prediction and control , 1984 .

[28]  Yanjun Liu,et al.  Multi-innovation stochastic gradient algorithm for multiple-input single-output systems using the auxiliary model , 2009, Appl. Math. Comput..

[29]  Feng Ding,et al.  Combined parameter and output estimation of dual-rate systems using an auxiliary model , 2004, Autom..

[30]  Feng Ding,et al.  Least squares based iterative algorithms for identifying Box-Jenkins models with finite measurement data , 2010, Digit. Signal Process..

[31]  Feng Ding,et al.  Convergence analysis of estimation algorithms for dual-rate stochastic systems , 2006, Appl. Math. Comput..