Automatic Detection of Irony and Humour in Twitter

Irony and humour are just two of many forms of figurative language. Approaches to identify in vast volumes of data such as the internet humorous or ironic statements is important not only from a theoretical view point but also for their potential applicability in social networks or human-computer interactive systems. In this study we investigate the automatic detection of irony and humour in social networks such as Twitter casting it as a classification problem. We propose a rich set of features for text interpretation and representation to train classification procedures. In cross-domain classification experiments our model achieves and improves state-of-the-art

[1]  Tony Veale,et al.  Detecting Ironic Intent in Creative Comparisons , 2010, ECAI.

[2]  อนิรุธ สืบสิงห์,et al.  Data Mining Practical Machine Learning Tools and Techniques , 2014 .

[3]  J. Lucariello Situational irony: A concept of events gone awry. , 1994 .

[4]  Rada Mihalcea,et al.  Characterizing Humour: An Exploration of Features in Humorous Texts , 2009, CICLing.

[5]  Humorous Similes,et al.  Humorous Similes , 2010 .

[6]  Tony Veale The Challenge of Creative Information Retrieval , 2004, CICLing.

[7]  Andrea Esuli,et al.  SENTIWORDNET: A Publicly Available Lexical Resource for Opinion Mining , 2006, LREC.

[8]  Carlo Strapparava,et al.  Making Computers Laugh: Investigations in Automatic Humor Recognition , 2005, HLT.

[9]  Mário J. Silva,et al.  Clues for detecting irony in user-generated contents: oh...!! it's "so easy" ;-) , 2009, TSA@CIKM.

[10]  Kalina Bontcheva,et al.  TwitIE: An Open-Source Information Extraction Pipeline for Microblog Text , 2013, RANLP.

[11]  Horacio Saggion,et al.  Modelling Irony in Twitter , 2014, EACL.

[12]  Julia M. Taylor,et al.  Toward Computational Recognition of Humorous Intent , 2005 .

[13]  Chris Venour,et al.  A computational model of lexical incongruity in humorous text , 2013 .

[14]  A. Utsumi Verbal irony as implicit display of ironic environment: Distinguishing ironic utterances from nonirony☆ , 2000 .

[15]  Nancy Ide,et al.  The American National Corpus First Release , 2004, LREC.

[16]  George A. Miller,et al.  WordNet: A Lexical Database for English , 1995, HLT.

[17]  R. Giora On irony and negation , 1995 .

[18]  Deirdre Wilson,et al.  Relevance theory: A tutorial , 2002 .

[19]  Ruli Manurung,et al.  The STANDUP Interactive Riddle Builder , 2006 .

[20]  Graeme Ritchie,et al.  The JAPE riddle generator: technical specification , 2003 .

[21]  Paolo Rosso,et al.  A multidimensional approach for detecting irony in Twitter , 2013, Lang. Resour. Evaluation.

[22]  Quintilian,et al.  The Institutio Oratoria of Quintilian , 1920 .

[23]  Tony Veale,et al.  An Ironic Fist in a Velvet Glove: Creative Mis-Representation in the Construction of Ironic Similes , 2010, Minds and Machines.

[24]  Claire Cardie,et al.  39. Opinion mining and sentiment analysis , 2014 .

[25]  Carlo Strapparava,et al.  Laughing with HAHAcronym, a Computational Humor System , 2006, AAAI.

[26]  Siobhan Chapman Logic and Conversation , 2005 .

[27]  Ari Rappoport,et al.  Semi-Supervised Recognition of Sarcasm in Twitter and Amazon , 2010, CoNLL.

[28]  Joan Lucariello Situational irony: A concept of events gone awry. , 1994 .