LDPC Code Density Evolution in the Error Floor Region

Abstract—This short paper explores density evolution (DE) forlow-density parity-check (LDPC) codes at signal-to-noise-ratios(SNRs) that are significantly above the decoding threshold. Thefocus is on the additive white Gaussian noise channel and LDPCcodes in which the variable nodes have regular degree.Prior work, using DE, produced results in the error floorregion which were asymptotic in the belief-propagation decoder’slog-likelihood ratio (LLR) values. We develop expressions whichclosely approximate the LLR growth behavior at moderate LLRmagnitudes. We then produce bounds on the mean extrinsiccheck-node LLR values required, as a function of SNR, such thatthe growth rate of the LLRs exceeds that of a particular trappingset’s internal LLRs such that its error floor contribution may beeliminated. We find that our predictions for the mean LLRs tobe accurate in the error floor region, but the predictions for theLLR variance to be lacking beyond several initial iterations.Index Terms—Low-density parity-check (LDPC) code, beliefpropagation (BP), sum-product algorithm (SPA) decoding, den-sity evolution, error floor, Margulis code, trapping set.

[1]  Sae-Young Chung,et al.  Analysis of sum-product decoding of low-density parity-check codes using a Gaussian approximation , 2001, IEEE Trans. Inf. Theory.

[2]  Stephen G. Wilson,et al.  A General Method for Finding Low Error Rates of LDPC Codes , 2006, ArXiv.

[3]  Hua Xiao,et al.  Error Rate Estimation of Low-Density Parity-Check Codes Decoded by Quantized Soft-Decision Iterative Algorithms , 2013, IEEE Transactions on Communications.

[4]  T. Etzion,et al.  Which codes have cycle-free Tanner graphs? , 1998, Proceedings. 1998 IEEE International Symposium on Information Theory (Cat. No.98CH36252).

[5]  Thomas J. Richardson,et al.  Error Floors of LDPC Codes , 2003 .

[6]  Paul H. Siegel,et al.  Error floor approximation for LDPC codes in the AWGN channel , 2011, 2011 49th Annual Allerton Conference on Communication, Control, and Computing (Allerton).

[7]  Johannes B. Huber,et al.  The Trapping Redundancy of Linear Block Codes , 2006, IEEE Transactions on Information Theory.

[8]  Niclas Wiberg,et al.  Codes and Decoding on General Graphs , 1996 .

[9]  Shuai Zhang,et al.  Controlling the Error Floor in LDPC Decoding , 2012, IEEE Transactions on Communications.

[10]  William E. Ryan,et al.  Low-floor decoders for LDPC codes , 2009, IEEE Transactions on Communications.

[11]  Robert G. Gallager,et al.  Low-density parity-check codes , 1962, IRE Trans. Inf. Theory.

[12]  Ralf Koetter,et al.  On the Block Error Probability of LP Decoding of LDPC Codes , 2006, ArXiv.

[13]  Emina Soljanin,et al.  Asymptotic Spectra of Trapping Sets in Regular and Irregular LDPC Code Ensembles , 2007, IEEE Transactions on Information Theory.

[14]  Michael Lentmaier,et al.  An analysis of the block error probability performance of iterative decoding , 2005, IEEE Transactions on Information Theory.

[15]  David J. C. MacKay,et al.  Weaknesses of Margulis and Ramanujan-Margulis low-density parity-check cCodes , 2003, MFCSIT.

[16]  Lara Dolecek,et al.  Analysis of Absorbing Sets and Fully Absorbing Sets of Array-Based LDPC Codes , 2009, IEEE Transactions on Information Theory.

[17]  Jing Sun Studies on graph-based coding systems , 2004 .

[18]  Yifei Zhang,et al.  Toward low LDPC-code floors: a case study , 2009, IEEE Transactions on Communications.

[19]  Shuai Zhang,et al.  On the dynamics of the error floor behavior in regular LDPC codes , 2009 .

[20]  Rüdiger L. Urbanke,et al.  The capacity of low-density parity-check codes under message-passing decoding , 2001, IEEE Trans. Inf. Theory.