The antiatherosclerotic action of 1G244 - An inhibitor of dipeptidyl peptidases 8/9 - is mediated by the induction of macrophage death.

[1]  A. Lusis,et al.  Roles of Macrophages in Atherogenesis , 2021, Frontiers in Pharmacology.

[2]  R. Olszanecki,et al.  The Anti-Atherosclerotic Action of FFAR4 Agonist TUG-891 in ApoE–Knockout Mice Is Associated with Increased Macrophage Polarization towards M2 Phenotype , 2021, International journal of molecular sciences.

[3]  M. Bennett,et al.  Vascular smooth muscle cells in atherosclerosis:Time for a reassessment. , 2021, Cardiovascular research.

[4]  R. Olszanecki,et al.  Decrease of the pro-inflammatory M1-like response by inhibition of dipeptidyl peptidases 8/9 in THP-1 macrophages - quantitative proteomics of the proteome and secretome. , 2020, Molecular immunology.

[5]  A. Misra,et al.  Macrophages and T cells in atherosclerosis: a translational perspective. , 2019, American journal of physiology. Heart and circulatory physiology.

[6]  R. Olszanecki,et al.  Anti-atherosclerotic action of GW9508 — Free fatty acid receptors activator — In apoE-knockout mice , 2019, Pharmacological reports : PR.

[7]  G. D. De Meyer,et al.  Macrophage Death as a Pharmacological Target in Atherosclerosis , 2019, Front. Pharmacol..

[8]  F. Hu,et al.  M2 Macrophages as a Potential Target for Antiatherosclerosis Treatment , 2019, Neural plasticity.

[9]  Jiao Guo,et al.  M2b macrophage polarization and its roles in diseases , 2018, Journal of leukocyte biology.

[10]  A. Waisman,et al.  Interleukin-1β promotes atheroprotective changes of advanced atherosclerotic lesions in mice , 2018, Nature Medicine.

[11]  A. Kentsis,et al.  DPP8/9 inhibitor-induced pyroptosis for treatment of acute myeloid leukemia , 2018, Nature Medicine.

[12]  Sarah E. Poplawski,et al.  Inhibition of Dpp8/9 Activates the Nlrp1b Inflammasome. , 2018, Cell chemical biology.

[13]  Lei Zheng,et al.  Pyroptosis and its relationship to atherosclerosis. , 2018, Clinica chimica acta; international journal of clinical chemistry.

[14]  P. Libby,et al.  Antiinflammatory Therapy with Canakinumab for Atherosclerotic Disease , 2017, The New England journal of medicine.

[15]  Hao Wu,et al.  Eating the Dead to Keep Atherosclerosis at Bay , 2017, Front. Cardiovasc. Med..

[16]  T. Golub,et al.  DPP8 and DPP9 inhibition induces pro-caspase-1-dependent monocyte and macrophage pyroptosis. , 2017, Nature chemical biology.

[17]  P. Qu,et al.  Expression of the NLRP3 Inflammasome in Carotid Atherosclerosis. , 2015, Journal of stroke and cerebrovascular diseases : the official journal of National Stroke Association.

[18]  M. Sanak,et al.  Neutrophil MiRNA-128-3p is Decreased During Active Phase of Granulo-matosis with Polyangiitis , 2015, Current genomics.

[19]  A. Lambeir,et al.  The Dipeptidyl Peptidase Family, Prolyl Oligopeptidase, and Prolyl Carboxypeptidase in the Immune System and Inflammatory Disease, Including Atherosclerosis , 2015, Front. Immunol..

[20]  Ira Tabas,et al.  Recent insights into the cellular biology of atherosclerosis , 2015, The Journal of cell biology.

[21]  W. Mu,et al.  Silence of NLRP3 Suppresses Atherosclerosis and Stabilizes Plaques in Apolipoprotein E-Deficient Mice , 2014, Mediators of inflammation.

[22]  G. Vunjak‐Novakovic,et al.  The role of macrophage phenotype in vascularization of tissue engineering scaffolds. , 2014, Biomaterials.

[23]  Z. Gong,et al.  NLRP3 inflammasomes show high expression in aorta of patients with atherosclerosis. , 2013, Heart, lung & circulation.

[24]  K. Moore,et al.  Neuroimmune Guidance Cue Semaphorin 3E Is Expressed in Atherosclerotic Plaques and Regulates Macrophage Retention , 2013, Arteriosclerosis, thrombosis, and vascular biology.

[25]  W. Martinet,et al.  Dipeptidyl peptidases in atherosclerosis: expression and role in macrophage differentiation, activation and apoptosis , 2013, Basic Research in Cardiology.

[26]  Ryuzo Kawamori,et al.  Anagliptin, a DPP-4 inhibitor, suppresses proliferation of vascular smooth muscles and monocyte inflammatory reaction and attenuates atherosclerosis in male apo E-deficient mice. , 2013, Endocrinology.

[27]  J. Totoń-Żurańska,et al.  Anti-Atherosclerotic Action of Agmatine in ApoE-Knockout Mice , 2012, Pharmacological Reports.

[28]  S. Hida,et al.  Critical role of caspase-1 in vascular inflammation and development of atherosclerosis in Western diet-fed apolipoprotein E-deficient mice. , 2012, Biochemical and biophysical research communications.

[29]  A. Miyazaki,et al.  Effects of PKF275-055, a dipeptidyl peptidase-4 inhibitor, on the development of atherosclerotic lesions in apolipoprotein E-null mice. , 2012, Metabolism: clinical and experimental.

[30]  N. Marx,et al.  Sitagliptin reduces plaque macrophage content and stabilises arteriosclerotic lesions in Apoe−/− mice , 2012, Diabetologia.

[31]  K. Moore,et al.  The neuroimmune guidance cue netrin-1 promotes atherosclerosis by inhibiting macrophage emigration from plaques , 2011, Nature Immunology.

[32]  S. Rajagopalan,et al.  Long-Term Dipeptidyl-Peptidase 4 Inhibition Reduces Atherosclerosis and Inflammation via Effects on Monocyte Recruitment and Chemotaxis , 2011, Circulation.

[33]  A. Mirza,et al.  Monoclonal antibodies targeting IL-1 beta reduce biomarkers of atherosclerosis in vitro and inhibit atherosclerotic plaque formation in Apolipoprotein E-deficient mice. , 2011, Atherosclerosis.

[34]  Olivier Levillain,et al.  Macrophage Plasticity in Experimental Atherosclerosis , 2010, PloS one.

[35]  Xin Chen,et al.  Biochemistry, pharmacokinetics, and toxicology of a potent and selective DPP8/9 inhibitor. , 2009, Biochemical pharmacology.

[36]  I. Tabas Consequences and Therapeutic Implications of Macrophage Apoptosis in Atherosclerosis: The Importance of Lesion Stage and Phagocytic Efficiency , 2005, Arteriosclerosis, thrombosis, and vascular biology.

[37]  D. Schrijvers,et al.  Phagocytosis of Apoptotic Cells by Macrophages Is Impaired in Atherosclerosis , 2005, Arteriosclerosis, thrombosis, and vascular biology.

[38]  E. Boerwinkle,et al.  From vulnerable plaque to vulnerable patient: a call for new definitions and risk assessment strategies: Part I. , 2003, Circulation.

[39]  A. Herman,et al.  Apoptosis in atherosclerosis: beneficial or detrimental? , 2000, Cardiovascular research.

[40]  P. Tsao,et al.  Regression of atherosclerosis: role of nitric oxide and apoptosis. , 1999, Circulation.

[41]  Jennifer L Hall,et al.  Inhibition of neointimal cell bcl-x expression induces apoptosis and regression of vascular disease , 1998, Nature Medicine.