Dark Halo Cusp: Asymptotic Convergence

We propose a model for how the buildup of dark halos by merging satellites produces a characteristic inner cusp, with a density profile ρ ∝ r, where αin → αas ≳ 1, as seen in cosmological N-body simulations of hierarchical clustering scenarios. Dekel, Devor, & Hetzroni argue that a flat core of αin < 1 exerts tidal compression that prevents local deposit of satellite material; the satellite sinks intact into the halo center, thus causing a rapid steepening to αin > 1. Using merger N-body simulations, we learn that this cusp is stable under a sequence of mergers and derive a practical tidal mass transfer recipe in regions where the local slope of the halo profile is α > 1. According to this recipe, the ratio of mean densities of the halo and initial satellite within the tidal radius equals a given function ψ(α), which is significantly smaller than unity (compared to being ~1 according to crude resonance criteria) and is a decreasing function of α. This decrease makes the tidal mass transfer relatively more efficient at larger α, which means steepening when α is small and flattening when α is large, thus causing convergence to a stable solution. Given this mass transfer recipe, linear perturbation analysis, supported by toy simulations, shows that a sequence of cosmological mergers with homologous satellites slowly leads to a fixed-point cusp with an asymptotic slope αas > 1. The slope depends only weakly on the fluctuation power spectrum, in agreement with cosmological simulations. During a long interim period the profile has an NFW-like shape, with a cusp of 1 < αin < αas. Thus, a cusp is enforced if enough compact satellite remnants make it intact into the inner halo. In order to maintain a flat core, satellites must be disrupted outside the core, possibly as a result of a modest puffing up due to baryonic feedback.

[1]  C. Steidel,et al.  Galaxies and Intergalactic Matter at Redshift z ~ 3: Overview , 2002, astro-ph/0210314.

[2]  J. Navarro,et al.  The Structural Evolution of Substructure , 2002, astro-ph/0203004.

[3]  A. Zacchei,et al.  Hα Rotation Curves: The Soft Core Question , 2002, astro-ph/0202075.

[4]  S. White,et al.  The inner structure of ΛCDM haloes – I. A numerical convergence study , 2002, astro-ph/0201544.

[5]  A. Dekel,et al.  Towards a resolution of the galactic spin crisis: mergers, feedback and spin segregation , 2002, astro-ph/0201187.

[6]  Martin D. Weinberg,et al.  Bar-driven Dark Halo Evolution: A Resolution of the Cusp-Core Controversy , 2001, astro-ph/0110632.

[7]  Rachel S. Somerville,et al.  ΛCDM-based Models for the Milky Way and M31. I. Dynamical Models , 2001, astro-ph/0110390.

[8]  O. Gnedin,et al.  Maximum feedback and dark matter profiles of dwarf galaxies , 2001, astro-ph/0108108.

[9]  R. Somerville,et al.  Squelched Galaxies and Dark Halos , 2001, astro-ph/0107538.

[10]  R. Somerville,et al.  Modelling angular momentum history in dark matter haloes , 2001, astro-ph/0105168.

[11]  J. Bullock,et al.  Angular Momentum Profiles of Warm Dark Matter Halos , 2001, astro-ph/0109432.

[12]  J. Ostriker,et al.  Observational Constraints on the Self-interacting Dark Matter Scenario and the Growth of Supermassive Black Holes , 2001, astro-ph/0108203.

[13]  Rachel S. Somerville,et al.  Can Photoionization Squelching Resolve the Substructure Crisis? , 2001, astro-ph/0107507.

[14]  R. Swaters,et al.  The angular momentum content of dwarf galaxies: new challenges for the theory of galaxy formation , 2001, astro-ph/0105082.

[15]  J. Navarro,et al.  The Phase-Space Density Profiles of Cold Dark Matter Halos , 2001, astro-ph/0104002.

[16]  Isaac Shlosman,et al.  Dark Halos: The Flattening of the Density Cusp by Dynamical Friction , 2001, astro-ph/0103386.

[17]  D. Merritt,et al.  Cusp Disruption in Minor Mergers , 2001, astro-ph/0101194.

[18]  A. Burkert,et al.  The effect of gas loss on the formation of bound stellar clusters , 2000, astro-ph/0007413.

[19]  P. Salucci The constant-density region of the dark haloes of spiral galaxies , 2000, astro-ph/0007389.

[20]  J. Bullock,et al.  Resolving the Structure of Cold Dark Matter Halos , 2000, astro-ph/0006343.

[21]  B. Wandelt,et al.  Halo Properties in Cosmological Simulations of Self-interacting Cold Dark Matter , 2000, astro-ph/0006218.

[22]  R. Somerville,et al.  Profiles of dark haloes: evolution, scatter and environment , 1999, astro-ph/9908159.

[23]  A. Dekel,et al.  A Universal Angular Momentum Profile for Galactic Halos , 2000, astro-ph/0011001.

[24]  O. Valenzuela,et al.  Formation and Structure of Halos in a Warm Dark Matter Cosmology , 2000, astro-ph/0010525.

[25]  J. Ostriker,et al.  Halo Formation in Warm Dark Matter Models , 2000, astro-ph/0010389.

[26]  R. Somerville,et al.  Evaluating approximations for halo merging histories , 2000 .

[27]  Y. Hoffman,et al.  Formation of Cuspy Density Profiles: A Generic Feature of Collisionless Gravitational Collapse , 2000, astro-ph/0005566.

[28]  P. Salucci,et al.  Dark Matter Scaling Relations , 2000, astro-ph/0004397.

[29]  T. Broadhurst,et al.  The Influence of Galactic Outflows on the Formation of Nearby Dwarf Galaxies , 2000, The Astrophysical journal.

[30]  Tom Broadhurst,et al.  The Role of Heating and Enrichment in Galaxy Formation , 2000, astro-ph/0003104.

[31]  C. Hogan,et al.  New dark matter physics: clues from halo structure , 2000, astro-ph/0002330.

[32]  D. Weinberg,et al.  Reionization and the Abundance of Galactic Satellites , 2000, astro-ph/0002214.

[33]  P. Salucci,et al.  The dark matter distribution in disc galaxies , 2000, astro-ph/0001082.

[34]  M. Steinmetz,et al.  Dark Halo and Disk Galaxy Scaling Laws in Hierarchical Universes , 2000, astro-ph/0001003.

[35]  G. Lake,et al.  Density Profiles and Substructure of Dark Matter Halos: Converging Results at Ultra-High Numerical Resolution , 1999, astro-ph/9910166.

[36]  D. Spergel,et al.  Observational evidence for self-interacting cold dark matter , 1999, Physical review letters.

[37]  R. Cen,et al.  The Structure of Dark Matter Halos in Hierarchical Clustering Theories , 1999, astro-ph/9909279.

[38]  B. Robertson,et al.  Constraints on the Structure of Dark Matter Halos from the Rotation Curves of Low Surface Brightness Galaxies , 1999, astro-ph/9911372.

[39]  George Lake,et al.  Dark Matter Substructure within Galactic Halos , 1999, astro-ph/9907411.

[40]  G. Lake,et al.  Cold collapse and the core catastrophe , 1999, astro-ph/9903164.

[41]  F. Prada,et al.  Where are the missing galactic satellites? , 1999, astro-ph/9901240.

[42]  R. Sheth,et al.  Mass growth and density profiles of dark matter haloes in hierarchical clustering , 1998, astro-ph/9803281.

[43]  M. Steinmetz,et al.  How Universal Are the Density Profiles of Dark Halos? , 1998, astro-ph/9803117.

[44]  U. California,et al.  How to plant a merger tree , 1997, astro-ph/9711080.

[45]  Stefan Gottloeber,et al.  Galaxies in N-Body Simulations: Overcoming the Overmerging Problem , 1997, astro-ph/9708191.

[46]  Garching,et al.  Evaluating Semi-Analytic Halo Merging Histories , 1998, astro-ph/9807277.

[47]  G. Lake,et al.  Dark matter haloes within clusters , 1998, astro-ph/9801192.

[48]  G. Lake,et al.  Resolving the Structure of Cold Dark Matter Halos , 1997, astro-ph/9709051.

[49]  S. White,et al.  A Universal Density Profile from Hierarchical Clustering , 1996, astro-ph/9611107.

[50]  S. White,et al.  Dark halo mergers and the formation of a universal profile , 1996, astro-ph/9611065.

[51]  C. Frenk,et al.  The cores of dwarf galaxy haloes , 1996, astro-ph/9610187.

[52]  L. Hernquist,et al.  Gasdynamics and starbursts in major mergers , 1995, astro-ph/9512099.

[53]  S. Cole,et al.  The structure of dark matter haloes in hierarchical clustering models , 1995, astro-ph/9510147.

[54]  HongSheng Zhao Analytical models for galactic nuclei , 1995, astro-ph/9509122.

[55]  S. White,et al.  The Structure of cold dark matter halos , 1995, astro-ph/9508025.

[56]  S. White,et al.  The Assembly of galaxies in a hierarchically clustering universe , 1994, astro-ph/9408067.

[57]  S. White,et al.  Simulations of X-ray clusters , 1994, astro-ph/9408069.

[58]  F. Pearce,et al.  Mergers of collisionless systems , 1993 .

[59]  S. Cole,et al.  Merger rates in hierarchical models of galaxy formation – II. Comparison with N-body simulations , 1994, astro-ph/9402069.

[60]  L. Hernquist,et al.  Fueling Starburst Galaxies with Gas-rich Mergers , 1991 .

[61]  A. Kashlinsky,et al.  Large-scale structure in the Universe , 1991, Nature.

[62]  J. Silk,et al.  Dwarf galaxies, cold dark matter, and biased galaxy formation , 1986 .