Acetonitrile in the stratosphere and implications for positive ion composition

The present paper describes a probable budget for acetonitrile and discusses the release of this gas through biomass burning and human activity. The different loss processes in the middle atmosphere are mainly due to the reaction with hydroxyl radicals and atomic oxygen. It is shown that the destruction of CH3CN by scavenging due to precipitation is probably not more efficient than the direct gas phase reactions. Losses due to ion chemistry are very difficult to estimate at present but are probably of secondary importance, except locally, where formation of multi-ion complexes is significant. A one-dimensional calculation shows that the vertical profiles of CH3CN, deduced from ion mass spectrometry data, can be reproduced satisfactorily if an annual global emission ranging from 1.5 × 1010 g to 5 × 1011 g is adopted, depending on the values of the reaction rate constants and eddy diffusion coefficient. The global atmospheric lifetime of CH3CN is estimated to be about 0.5 to 1.4 years. Finally, the calculated acetonitrile profiles are introduced in an ion model to calculate the abundances of the major positive stratospheric ions. The results are consistent with present observations.

[1]  E. Arijs,et al.  Stratospheric positive ion composition measurements between 22 and 45 km: An updated analysis , 1986 .

[2]  C. Muller Acetonitrile in the Earth's atmosphere: An upper limit deduced from infrared solar spectra , 2017 .

[3]  F. Arnold,et al.  Lower stratosphere trace gas detection using aircraft-borne active chemical ionization mass spectrometry , 1985, Nature.

[4]  G. A. Dawson,et al.  Tropospheric light alcohols, carbonyls, and acetonitrile: Concentrations in the southwestern United States and Henry's Law data , 1985 .

[5]  G. Brasseur,et al.  Is hydrogen cyanide (HCN) a progenitor of acetonitrile (CH3CN) in the atmosphere , 1985 .

[6]  S. Hamm,et al.  Acetonitrile in the troposphere: Residence time due to rainout and uptake by the ocean , 1984 .

[7]  G. Poulet,et al.  Kinetic study of the reactions of acetonitrile with chlorine (Cl) and hydroxyl radicals , 1984 .

[8]  M. Kurylo,et al.  A kinetics investigation of the gas-phase reactions of atomic chlorine(2P) and hydroxyl(X2.PI.) with acetonitrile: atmospheric significance and evidence for decreased reactivity between strong electrophiles , 1984 .

[9]  G. Brasseur,et al.  Reaction of acetonitrile and chlorine atoms , 1984 .

[10]  G. A. Dawson,et al.  Surface acetonitrile near Tucson, Arizona , 1984 .

[11]  M. Meot-ner The ionic hydrogen bond and ion solvation. 2. Solvation of onium ions by one to seven water molecules. Relations between monomolecular, specific, and bulk hydrogen , 1984 .

[12]  Patrick R. Zimmerman,et al.  Hydrocarbon and carbon monoxide emissions from biomass burning in Brazil , 1984 .

[13]  R. Moss,et al.  Stratospheric sources of CH3CN and CH3OH , 1984 .

[14]  G. Poulet,et al.  Kinetic study of the reactions of acetonitrile with Cl and OH radicals , 1984 .

[15]  E. Arijs,et al.  Mass spectrometric measurements of stratospheric ions , 1984 .

[16]  R. Cicerone,et al.  The atmospheric chemistry of hydrogen cyanide (HCN) , 1983 .

[17]  Paul J. Crutzen,et al.  A two‐dimensional photochemical model of the atmosphere: 2. The tropospheric budgets of the anthropogenic chlorocarbons CO, CH4, CH3Cl and the effect of various NO x sources on tropospheric ozone , 1983 .

[18]  G. Brasseur,et al.  acetonitrile in the atmosphere , 1983 .

[19]  E. Arijs,et al.  Positive ion composition measurements and acetonitrile in the upper stratosphere , 1983, Nature.

[20]  G. Brasseur,et al.  Modelling of stratospheric ions - A first attempt , 1983 .

[21]  E. Arijs Positive and negative ions in the stratosphere , 1983 .

[22]  K. Becker,et al.  Acetonitrile in the lower troposphere , 1982 .

[23]  D. R. Bates Recombination of small ions in the troposphere and lower stratosphere , 1982 .

[24]  N. Adams,et al.  Ionic recombination in the stratosphere , 1982 .

[25]  H. Schlager,et al.  Implications for trace gases and aerosols of large negative ion clusters in the stratosphere , 1982, Nature.

[26]  P. Kebarle,et al.  Thermodynamics and kinetics of the gas-phase reactions H3O+(H2O)n-1 + water = H3O+(H2O)n , 1982 .

[27]  E. Arijs,et al.  Stratospheric negative ion composition measurements, ion abundances and related trace gas detection , 1982 .

[28]  R. Zellner,et al.  Laboratory Kinetic Investigations of the Tropospheric Oxidation of Selected Industrial Emissions , 1982 .

[29]  F. Arnold Physics and Chemistry of Atmospheric Ions , 1982 .

[30]  J. Heicklen The Removal of Atmospheric Gases by Particulate Matter , 2013 .

[31]  E. Ferguson,et al.  Ion chemistry of the stratosphere , 1981 .

[32]  D. Hunten,et al.  Stratospheric eddy diffusion coefficients from tracer data , 1981 .

[33]  F. Arnold,et al.  Extended positive ion composition measurements in the stratosphere ‐ Implications for neutral trace gases , 1981 .

[34]  D. Hofmann,et al.  Balloon‐borne measurements of electrical conductivity, mobility, and the recombination coefficient , 1981 .

[35]  G. W. Harris,et al.  Rate constants for the reaction of OH radicals with CH3CN, C2H5CN AND CH2CH-CN in the temperature range 298–424 K , 1981 .

[36]  N. Adams,et al.  Ion-ion mutual neutralization and ion-neutral switching reactions of some stratospheric ions , 1981 .

[37]  H. Böhringer,et al.  Acetonitrile in the stratosphere—implications from laboratory studies , 1981, Nature.

[38]  E. Ferguson,et al.  Mass spectrometric measurements of fractional ion abundances in the stratosphere—Negative ions , 1981 .

[39]  E. Arijs,et al.  Negative ion composition measurements in the stratosphere , 1981 .

[40]  E. Arijs,et al.  Unambiguous mass determination of major stratospheric positive ions , 1980, Nature.

[41]  J. L. Franklin,et al.  Proton affinities of neutral molecules , 1980 .

[42]  P. Crutzen,et al.  Estimates of gross and net fluxes of carbon between the biosphere and the atmosphere from biomass burning , 1980 .

[43]  D. Albritton,et al.  The role of H2SO4 in stratospheric negative‐ion chemistry , 1980 .

[44]  S. Wlodek,et al.  Stabilities of gas-phase NO3− · (HNO3)n, n ⩽ 6, clusters , 1980 .

[45]  F. Arnold,et al.  Multi-ion complexes in the stratosphere—implications for trace gases and aerosol , 1980, Nature.

[46]  E. Murad,et al.  Chemistry of meteor metals in the stratosphere , 1979 .

[47]  D. Albritton,et al.  Chapter 2 – Ion chemistry of the earth's atmosphere , 1979 .

[48]  E. Ferguson Sodium hydroxide ions in the stratosphere , 1978 .

[49]  D. Albritton,et al.  Reactions of O2 + · O2 with CO2, O3, and CH4 and O2 + · O3 with H2O and CH4 and their role in stratospheric ion chemistry , 1978 .

[50]  H. Böhringer,et al.  Composition measurements of stratospheric positive ions , 1978 .

[51]  M. Meot-ner SOLVATION OF THE PROTON BY HYDROGEN CYANIDE AND ACETONITRILE. CONDENSATION OF HYDROGEN CYANIDE WITH IONS IN THE GAS PHASE , 1978 .

[52]  M. Heaps Parametrization of the cosmic ray ion-pair production rate above 18 km , 1978 .

[53]  D. Albritton,et al.  Rate constants for the reactions of O2+, NO2+, NO+, H3O+, CO3−, NO2−, and halide ions with N2O5 at 300 K , 1978 .

[54]  E. Arijs,et al.  Mass spectrometric measurement of the positive ion composition in the stratosphere , 1978, Nature.

[55]  D. Hoffmann,et al.  Nitrogen-containing compounds in tobacco and tobacco smoke. , 1977 .

[56]  D. Krankowsky,et al.  First mass spectrometric measurements of positive ions in the stratosphere , 1977, Nature.

[57]  F. Fehsenfeld,et al.  The heats of formation of NO3− and NO3− association complexes with HNO3 and HBr , 1977 .

[58]  R. Timmons,et al.  The kinetics and mechanisms of the reactions of O/3P/ atoms with CH3CN and CF3CN , 1977 .

[59]  J. Firmin,et al.  The biochemical pathway for the breakdown of methyl cyanide (acetonitrile) in bacteria. , 1976, The Biochemical journal.

[60]  F. Fehsenfeld,et al.  Gas phase ion chemistry of HNO3 , 1975 .

[61]  D. Stedman,et al.  Erratum: ''The vertical distribution of soluble gases in the troposphere'' , 1975 .

[62]  M. Bowers,et al.  Parameterization of the average dipole orientation theory: temperature dependence , 1975 .

[63]  P. Kebarle,et al.  Temperature dependence of the rate constants for the third order reactions: O2++2O2=O4++O2 and O4++2O2=O6++O2 , 1973 .

[64]  H. Okabe,et al.  Photon impact studies of C2HCN and CH3CN in the vacuum ultraviolet; heats of formation of C2H and CH3CN , 1973 .

[65]  C. J. Howard,et al.  Kinetics and Mechanism of the Formation of Water Cluster Ions from O2+ and H2O , 1972 .

[66]  W. R. Johnson,et al.  Mechanisms of hydrogen cyanide formation from the pyrolysis of amino acids and related compounds , 1971 .

[67]  D. Conway,et al.  Determination of the Bond Energies for the Series O2–O2+ through O2–O10+ , 1970 .

[68]  E. Steacie,et al.  THE PHOTOLYSIS OF METHYL CYANIDE AT 1849 Å , 1958 .

[69]  F. Maslan,et al.  Acetonitrile–Water Liquid–Vapor Equilibrium , 1956 .

[70]  R. Williams,et al.  The infra-red spectra of methyl cyanide and methyl isocyanide , 1952 .

[71]  A. Vierk Experimentelle Untersuchungen an den Zweistoffsystemen: Wasser–Acetonitril, Wasser–Dioxan, Äthanol–Acetonitril und Cyclohexan–Dioxan , 1950 .

[72]  J. Cutler Absorption of the Alkyl Cyanides in the Vacuum Ultraviolet , 1948 .

[73]  D. Othmer Composition of Vapors from Boiling Binary Solutions , 1945 .