Nearly Optimal Sparse Group Testing

Group testing is the process of pooling arbitrary subsets from a set of <inline-formula> <tex-math notation="LaTeX">$ {n}$ </tex-math></inline-formula> items so as to identify, with a minimal number of tests, a “small” subset of <inline-formula> <tex-math notation="LaTeX">$ {d}$ </tex-math></inline-formula> defective items. In “classical” non-adaptive group testing, it is known that when <inline-formula> <tex-math notation="LaTeX">$ {d}$ </tex-math></inline-formula> is substantially smaller than <inline-formula> <tex-math notation="LaTeX">$ {n}$ </tex-math></inline-formula>, <inline-formula> <tex-math notation="LaTeX">$\Theta ( {d}\log ( {n}))$ </tex-math></inline-formula> tests are both information-theoretically necessary and sufficient to guarantee recovery with high probability. Group testing schemes in the literature that meet this bound require most items to be tested <inline-formula> <tex-math notation="LaTeX">$ {\Omega }(\log ( {n}))$ </tex-math></inline-formula> times, and most tests to incorporate <inline-formula> <tex-math notation="LaTeX">$ {\Omega }({{n/d}})$ </tex-math></inline-formula> items. Motivated by physical considerations, we study group testing models in which the testing procedure is constrained to be “sparse.” Specifically, we consider (separately) scenarios in which 1) items are finitely divisible and hence may participate in at most <inline-formula> <tex-math notation="LaTeX">$ {\gamma } \in {o}(\log ( {n}))$ </tex-math></inline-formula> tests; or 2) tests are size-constrained to pool no more than <inline-formula> <tex-math notation="LaTeX">$\rho \in {o}({{n/d}})$ </tex-math></inline-formula> items per test. For both scenarios, we provide information-theoretic lower bounds on the number of tests required to guarantee high probability recovery. In particular, one of our main results shows that <inline-formula> <tex-math notation="LaTeX">$ {\gamma }$ </tex-math></inline-formula>-finite divisibility of items forces <italic>any</italic> non-adaptive group testing algorithm with the probability of recovery error at most <inline-formula> <tex-math notation="LaTeX">$ {\epsilon }$ </tex-math></inline-formula> to perform at least <inline-formula> <tex-math notation="LaTeX">$ {\gamma } {d}({ {n/d}})^{({1}-{5} {\epsilon })/ {\gamma }}$ </tex-math></inline-formula> tests. Analogously, for <inline-formula> <tex-math notation="LaTeX">$ {\rho }$ </tex-math></inline-formula>-sized constrained tests, we show an information-theoretic lower bound of <inline-formula> <tex-math notation="LaTeX">$ {\Omega }( {n}/ {\rho })$ </tex-math></inline-formula> tests for high-probability recovery–hence in both settings the number of tests required grows dramatically (relative to the classical setting) as a function of <inline-formula> <tex-math notation="LaTeX">$ {n}$ </tex-math></inline-formula>. In both scenarios, we provide both randomized constructions and explicit constructions of designs with computationally efficient reconstruction algorithms that require a number of tests that is optimal up to constant or small polynomial factors in some regimes of <inline-formula> <tex-math notation="LaTeX">${{n, d,}} {\gamma }$ </tex-math></inline-formula>, and <inline-formula> <tex-math notation="LaTeX">$ {\rho }$ </tex-math></inline-formula>. The randomized design/reconstruction algorithm in the <inline-formula> <tex-math notation="LaTeX">$ {\rho }$ </tex-math></inline-formula>-sized test scenario is <italic>universal</italic>–independent of the value of <inline-formula> <tex-math notation="LaTeX">$ {d}$ </tex-math></inline-formula>, as long as <inline-formula> <tex-math notation="LaTeX">$ {\rho } \in {o}({\textbf {n/d}})$ </tex-math></inline-formula>. We also investigate the effect of unreliability/noise in test outcomes, and show that whereas the impact of noise in test outcomes can be obviated with a small (constant factor) penalty in the number of tests in the <inline-formula> <tex-math notation="LaTeX">$ {\rho }$ </tex-math></inline-formula>-sized tests scenario, there is <italic>no</italic> group-testing procedure, <italic>regardless</italic> of the number of tests, that can combat noise in the <inline-formula> <tex-math notation="LaTeX">$ {\gamma }$ </tex-math></inline-formula>-divisible scenario.

[1]  Sidharth Jaggi,et al.  Nearly optimal sparse group testing , 2016, 2016 54th Annual Allerton Conference on Communication, Control, and Computing (Allerton).

[2]  D. Du,et al.  Combinatorial Group Testing and Its Applications , 1993 .

[3]  George Atia,et al.  Boolean Compressed Sensing and Noisy Group Testing , 2009, IEEE Transactions on Information Theory.

[4]  Sidharth Jaggi,et al.  Novel Impossibility Results for Group-Testing , 2018, 2018 IEEE International Symposium on Information Theory (ISIT).

[5]  Mayank Bakshi,et al.  GROTESQUE: Noisy Group Testing (Quick and Efficient) , 2013, 2013 51st Annual Allerton Conference on Communication, Control, and Computing (Allerton).

[6]  Mahdi Cheraghchi,et al.  Noise-resilient group testing: Limitations and constructions , 2008, Discret. Appl. Math..

[7]  Graham Cormode,et al.  What's hot and what's not: tracking most frequent items dynamically , 2003, TODS.

[8]  Matthew Aldridge,et al.  Improved group testing rates with constant column weight designs , 2016, 2016 IEEE International Symposium on Information Theory (ISIT).

[9]  Venkatesh Saligrama,et al.  Non-adaptive group testing: Explicit bounds and novel algorithms , 2012, 2012 IEEE International Symposium on Information Theory Proceedings.

[10]  Yonggang Wen,et al.  Non-Adaptive Fault Diagnosis for All-Optical Networks via Combinatorial Group Testing on Graphs , 2007, IEEE INFOCOM 2007 - 26th IEEE International Conference on Computer Communications.

[11]  Tadashi Wadayama,et al.  Comments on “Nonadaptive Group Testing Based on Sparse Pooling Graphs” , 2018, IEEE Transactions on Information Theory.

[12]  Ayfer Özgür,et al.  Sparse group testing codes for low-energy massive random access , 2017, 2017 55th Annual Allerton Conference on Communication, Control, and Computing (Allerton).

[13]  Volkan Cevher,et al.  Near-Optimal Noisy Group Testing via Separate Decoding of Items , 2018, IEEE Journal of Selected Topics in Signal Processing.

[14]  Amin Karbasi,et al.  Group Testing With Probabilistic Tests: Theory, Design and Application , 2010, IEEE Transactions on Information Theory.

[15]  Ely Porat,et al.  Search Methodologies , 2022 .

[16]  Matthew Aldridge,et al.  Individual Testing Is Optimal for Nonadaptive Group Testing in the Linear Regime , 2018, IEEE Transactions on Information Theory.

[17]  Wenhao Huang,et al.  Group testing with prior statistics , 2014, 2014 IEEE International Symposium on Information Theory.

[18]  Arkadii G. D'yachkov,et al.  A survey of superimposed code theory , 1983 .

[19]  Matthew Aldridge,et al.  The capacity of adaptive group testing , 2013, 2013 IEEE International Symposium on Information Theory.

[20]  Arya Mazumdar,et al.  Nonadaptive Group Testing With Random Set of Defectives , 2015, IEEE Transactions on Information Theory.

[21]  Annalisa De Bonis Efficient Group Testing Algorithms with a Constrained Number of Positive Responses , 2014, COCOA.

[22]  Kannan Ramchandran,et al.  SAFFRON: A fast, efficient, and robust framework for group testing based on sparse-graph codes , 2016, 2016 IEEE International Symposium on Information Theory (ISIT).

[23]  Mayank Bakshi,et al.  Efficient Algorithms for Noisy Group Testing , 2017, IEEE Transactions on Information Theory.

[24]  M. Mézard,et al.  Group Testing with Random Pools: Phase Transitions and Optimal Strategy , 2007, 0711.2242.

[25]  Arya Mazumdar,et al.  Group Testing Schemes From Codes and Designs , 2015, IEEE Transactions on Information Theory.

[26]  Richard C. Singleton,et al.  Nonrandom binary superimposed codes , 1964, IEEE Trans. Inf. Theory.

[27]  Matthew Aldridge,et al.  Group Testing Algorithms: Bounds and Simulations , 2013, IEEE Transactions on Information Theory.

[28]  Volkan Cevher,et al.  Limits on Support Recovery With Probabilistic Models: An Information-Theoretic Framework , 2015, IEEE Transactions on Information Theory.

[29]  Matthew Aldridge,et al.  Performance of Group Testing Algorithms With Near-Constant Tests Per Item , 2016, IEEE Transactions on Information Theory.

[30]  Tadashi Wadayama Nonadaptive Group Testing Based on Sparse Pooling Graphs , 2017, IEEE Transactions on Information Theory.

[31]  Volkan Cevher,et al.  Phase Transitions in Group Testing , 2016, SODA.

[32]  Anthony J. Macula,et al.  A simple construction of d-disjunct matrices with certain constant weights , 1996, Discret. Math..

[33]  A. Sterrett On the Detection of Defective Members of Large Populations , 1957 .

[34]  Olgica Milenkovic,et al.  Symmetric group testing and superimposed codes , 2011, 2011 IEEE Information Theory Workshop.

[35]  Sidharth Jaggi,et al.  Non-Adaptive Group Testing: Explicit Bounds and Novel Algorithms , 2014, IEEE Trans. Inf. Theory.

[36]  Ely Porat,et al.  Explicit Nonadaptive Combinatorial Group Testing Schemes , 2011, IEEE Trans. Inf. Theory.

[37]  Omer Gurewitz,et al.  Secure Group Testing , 2016, 2016 IEEE International Symposium on Information Theory (ISIT).

[38]  Arkadii G. D'yachkov,et al.  Bounds on the rate of disjunctive codes , 2013, 2014 IEEE International Symposium on Information Theory.

[39]  Samuel Zaidman,et al.  Advanced Calculus: An Introduction to Mathematical Analysis , 1997 .

[40]  Mayank Bakshi,et al.  Stochastic threshold group testing , 2013, 2013 IEEE Information Theory Workshop (ITW).

[41]  A. Sebő ON TWO RANDOM SEARCH PROBLEMS , 1985 .

[42]  P. Erdös,et al.  Families of finite sets in which no set is covered by the union ofr others , 1985 .