Enhancing the supercapacitor performance of flexible MnOxCarbon cloth electrodes by Pd-decoration

CZ.1.05/2.1.00/19.0409, CPS, Center for Produce Safety; ERDF, European Regional Development Fund; LO1504, NPU, Northwestern Polytechnical University; LTACH17015, MOE, Ministry of Education

[1]  Yu-Kuei Hsu,et al.  Highly flexible supercapacitors with manganese oxide nanosheet/carbon cloth electrode , 2011 .

[2]  Doron Aurbach,et al.  Carbon-based composite materials for supercapacitor electrodes: a review , 2017 .

[3]  Weifeng Wei,et al.  Morphology evolution in anodically electrodeposited manganese oxide nanostructures for electrochemical supercapacitor applications—Effect of supersaturation ratio , 2011 .

[4]  H. E. Unalan,et al.  Manganese dioxide nanowires on carbon nanofiber frameworks for efficient electrochemical device electrodes , 2017 .

[5]  Qinghua Zhang,et al.  Freestanding composite electrodes of MnOx embedded carbon nanofibers for high-performance supercapacitors , 2014 .

[6]  V. Pavlínek,et al.  MnO2 nanoflakes/hierarchical porous carbon nanocomposites for high-performance supercapacitor electrodes , 2015 .

[7]  E. Wang,et al.  One-step electrochemical approach to the synthesis of Graphene/MnO2 nanowall hybrids , 2011 .

[8]  F. Favier,et al.  Microstructural effects on charge-storage properties in MnO2-based electrochemical supercapacitors. , 2008, ACS applied materials & interfaces.

[9]  Limin Zhou,et al.  A general in-situ etching and synchronous heteroatom doping strategy to boost the capacitive performance of commercial carbon fiber cloth , 2018 .

[10]  C. Julien,et al.  Spectroscopic studies of the local structure in positive electrodes for lithium batteries , 2002 .

[11]  G. Chen,et al.  Manganese oxide based materials for supercapacitors , 2008 .

[12]  J. Yue,et al.  General Synthesis of MnOx (MnO2, Mn2O3, Mn3O4, MnO) Hierarchical Microspheres as Lithium-ion Battery Anodes , 2015 .

[13]  C. Julien,et al.  Lattice vibrations of manganese oxides. Part I. Periodic structures. , 2004, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[14]  S. Donne,et al.  Electrolytic Manganese Dioxide Structural and Morphological Effects on Capacitive Performance , 2016 .

[15]  F. Walsh,et al.  Materials and fabrication of electrode scaffolds for deposition of MnO2 and their true performance in supercapacitors , 2015 .

[16]  Shih‐Yuan Lu,et al.  Manganese oxide/graphene aerogel composites as an outstanding supercapacitor electrode material. , 2013, Chemistry.

[17]  S. Donne,et al.  Nucleation and growth of electrodeposited manganese dioxide for electrochemical capacitors , 2014 .

[18]  Madeleine F Dupont,et al.  Electrochemically active surface area effects on the performance of manganese dioxide for electrochemical capacitor applications , 2013 .

[19]  Mathieu Toupin,et al.  Crystalline MnO2 as Possible Alternatives to Amorphous Compounds in Electrochemical Supercapacitors , 2006 .

[20]  Xianzhong Sun,et al.  Microwave-assisted reflux rapid synthesis of MnO2 nanostructures and their application in supercapacitors , 2013 .

[21]  Jianfeng Chen,et al.  Ultrasound–Microwave-Assisted Synthesis of MnO2 Supercapacitor Electrode Materials , 2014 .

[22]  Xinhua Li,et al.  Flexible supercapacitor based on MnO2 nanoparticles via electrospinning , 2013 .

[23]  P. Ajayan,et al.  Multisegmented Au-MnO2/Carbon Nanotube Hybrid Coaxial Arrays for High-Power Supercapacitor Applications , 2010 .

[24]  Vikram Kumar,et al.  Sol-gel synthesis of manganese oxide films and their predominant electrochemical properties , 2015 .

[25]  Jae-Hyun Kim,et al.  Activated Carbon Textile via Chemistry of Metal Extraction for Supercapacitors. , 2016, ACS nano.

[26]  M. Chigane,et al.  Manganese Oxide Thin Film Preparation by Potentiostatic Electrolyses and Electrochromism , 2000 .

[27]  Yat Li,et al.  Fabrication and Characteristics of Galvanostatic Electrodeposited MnO2 on Porous Nickel from Etched Aluminium , 2014 .

[28]  J. M. Rojo,et al.  Composite Electrodes Made from Carbon Cloth as Supercapacitor Material and Manganese and Cobalt Oxide as Battery One , 2016 .

[29]  Xiaoxiao Liu,et al.  Flexible fiber-shaped supercapacitors based on hierarchically nanostructured composite electrodes , 2015, Nano Research.

[30]  D. Ivey,et al.  Effect of electrodeposition conditions on the electrochemical capacitive behavior of synthesized man , 2011 .

[31]  Jun Yu Li,et al.  Nucleation/Growth Mechanisms and Morphological Evolution of Porous MnO2 Coating Deposited on Graphite for Supercapacitor , 2017, Materials.

[32]  Alain Mauger,et al.  Nanostructured MnO2 as Electrode Materials for Energy Storage , 2017, Nanomaterials.

[33]  Zhennan Gu,et al.  Growth of manganese oxide nanoflowers on vertically-aligned carbon nanotube arrays for high-rate electrochemical capacitive energy storage. , 2008, Nano letters.

[34]  Jing Zhang,et al.  Paper‐Based Electrodes for Flexible Energy Storage Devices , 2017, Advanced science.

[35]  T. Centeno,et al.  The role of the electric conductivity of carbons in the electrochemical capacitor performance , 2011 .

[36]  Pengyi Tang,et al.  A metal-decorated nickel foam-inducing regulatable manganese dioxide nanosheet array architecture for high-performance supercapacitor applications. , 2013, Nanoscale.

[37]  S. Ikeda,et al.  X-ray photoelectron spectroscopy of manganese—oxygen systems , 1975 .

[38]  Masa-aki Suzuki,et al.  MnO2/carbon nanowall electrode for future energy storage application: effect of carbon nanowall growth period and MnO2 mass loading , 2014 .