Storing the subdivision of a polyhedral surface

A common structure arising in computational geometry is the subdivision of a plane defined by the faces of a straight line planar graph. We consider a natural generalization of this structure on a polyhedral surface. The regions of the subdivision are bounded by geodesics on the surface of the polyhedron. A method is given for representing such a subdivision that is efficient both with respect to space and the time required to answer a number of different queries involving the subdivision. For example, given a point @@@@ on the surface of the polyhedron, the region of the subdivision containing <italic>x</italic> can be determined in logarithmic time. If <italic>n</italic> denotes the number of edges in the polyhedron, and <italic>m</italic> denotes the number of geodesics in the subdivision, then the space required by the data structure is <italic>&Ogr;</italic>((<italic>n</italic> + <italic>m</italic>) log (<italic>n</italic> + <italic>m</italic>)). Combined with existing algorithms for computing Voronoi diagrams on the surface of polyhedra, this structure provides an efficient solution to the nearest neighbor query problem on polyhedral surfaces.

[1]  David P. Dobkin,et al.  Efficient uses of the past , 1980, 21st Annual Symposium on Foundations of Computer Science (sfcs 1980).

[2]  Joseph S. B. Mitchell,et al.  The Discrete Geodesic Problem , 1987, SIAM J. Comput..

[3]  D. T. Lee,et al.  Location of a point in a planar subdivision and its applications , 1976, STOC '76.

[4]  David G. Kirkpatrick,et al.  Fast Detection of Polyhedral Intersection , 1983, Theor. Comput. Sci..

[5]  Michael Ian Shamos,et al.  Closest-point problems , 1975, 16th Annual Symposium on Foundations of Computer Science (sfcs 1975).

[6]  David G. Kirkpatrick,et al.  Fast Detection of Polyhedral Intersections , 1982, ICALP.

[7]  D. Mount On Finding Shortest Paths on Convex Polyhedra. , 1985 .

[8]  Micha Sharir,et al.  Intersection and Closest-Pair Problems for a Set of Planar Discs , 1985, SIAM J. Comput..

[9]  Norishige Chiba,et al.  A Linear 5-Coloring Algorithm of Planar Graphs , 1981, J. Algorithms.

[10]  Leonidas J. Guibas,et al.  Optimal Point Location in a Monotone Subdivision , 1986, SIAM J. Comput..

[11]  David G. Kirkpatrick,et al.  Optimal Search in Planar Subdivisions , 1983, SIAM J. Comput..

[12]  Micha Sharir,et al.  On shortest paths in polyhedral spaces , 1986, STOC '84.

[13]  Leonidas J. Guibas,et al.  Primitives for the manipulation of general subdivisions and the computation of Voronoi diagrams , 1983, STOC.

[14]  Leonidas J. Guibas,et al.  Primitives for the manipulation of general subdivisions and the computation of Voronoi diagrams , 1983, STOC.

[15]  Franco P. Preparata,et al.  A New Approach to Planar Point Location , 1981, SIAM J. Comput..

[16]  David E. Muller,et al.  Finding the Intersection of two Convex Polyhedra , 1978, Theor. Comput. Sci..

[17]  Leonidas J. Guibas,et al.  Computing convolutions by reciprocal search , 1986, SCG '86.

[18]  D. Mount Voronoi Diagrams on the Surface of a Polyhedron. , 1985 .