Data Types as Lattices

The meaning of many kinds of expressions in programming languages can be taken as elements of certain spaces of “partial” objects. In this report these spaces are modeled in one universal domain ${\bf P} \omega $, the set of all subsets of the integers. This domain renders the connection of this semantic theory with the ordinary theory of number theoretic (especially general recursive) functions clear and straightforward.

[1]  Christopher P. Wadsworth Approximate Reduction and Lambda Calculus Models , 1978, SIAM J. Comput..

[2]  Michael J. C. Gordon Operational reasoning and denotational semantics. , 1975 .

[3]  Robin Milner,et al.  Processes: A Mathematical Model of Computing Agents , 1975 .

[4]  C. Böhm,et al.  λ-Calculus and Computer Science Theory , 1975, Lecture Notes in Computer Science.

[5]  Ernest Gene Manes,et al.  Category Theory Applied to Computation and Control , 1975, Lecture Notes in Computer Science.

[6]  Joseph A. Goguen,et al.  Initial Algebra Semantics , 1974, SWAT.

[7]  Ashok K. Chandra,et al.  Generalized Program Schemas , 1974, SIAM J. Comput..

[8]  Assaf J. Kfoury,et al.  Translatability of Schemas over Restricted Interpretations , 1974, J. Comput. Syst. Sci..

[9]  Rod M. Burstall,et al.  The algebraic theory of recursive program schemes , 1974, Category Theory Applied to Computation and Control.

[10]  Peter Hitchcock An approach to formal reasoning about programs , 1974 .

[11]  Ashok K. Chandra,et al.  The Power of Parallelism and Nondeterminism in Programming , 1974, IFIP Congress.

[12]  Jean-Jacques Lévy,et al.  Mechanizable Proofs about Parallel Processes , 1973, SWAT.

[13]  F. Lockwood Morris,et al.  Advice on structuring compilers and proving them correct , 1973, POPL.

[14]  Leonard P. Sasso,et al.  A minimal partial degree , 1973 .

[15]  R. D. Tennent,et al.  Mathematical semantics and design of programming languages. , 1973 .

[16]  Barry K. Rosen,et al.  Tree-Manipulating Systems and Church-Rosser Theorems , 1973, JACM.

[17]  Jesse B. Wright Characterization of Recursively Enumerable Sets , 1972, J. Symb. Log..

[18]  Willem P. de Roever,et al.  A Calculus for Recursive Program Schemes , 1972, ICALP.

[19]  J. M. Cadiou,et al.  Recursive definitions of partial functions and their computations , 1972, Proving Assertions About Programs.

[20]  Robin Milner,et al.  Implementation and applications of Scott's logic for computable functions , 1972, Proving Assertions About Programs.

[21]  Zohar Manna,et al.  Inductive methods for proving properties of programs , 1973, Commun. ACM.

[22]  Robert L. Constable,et al.  On Classes of Program Schemata , 1971, SWAT.

[23]  Eric G. Wagner,et al.  An algebraic theory of recursive definitions and recursive languages , 1971, STOC.

[24]  Lance Gutteridge Some results on enumeration reductibility. , 1971 .

[25]  Andrzej Blikle Algorithmically definable functions : a contribution towards the semantics of programming languages , 1971 .

[26]  Zohar Manna,et al.  Formalization of Properties of Functional Programs , 1970, JACM.

[27]  Donald M. Kaplan,et al.  Regular Expressions and the Equivalence of Programs , 1969, J. Comput. Syst. Sci..

[28]  Zohar Manna,et al.  PROPERTIES OF PROGRAMS AND PARTIAL FUNCTION LOGIC , 1969 .

[29]  Richard M. Karp,et al.  Parallel Program Schemata , 1969, J. Comput. Syst. Sci..

[30]  Rod M. Burstall,et al.  Proving Properties of Programs by Structural Induction , 1969, Comput. J..

[31]  James H. Morris,et al.  Lambda-calculus models of programming languages. , 1969 .

[32]  Peter J. Landin,et al.  PROGRAMS AND THEIR PROOFS: AN ALGEBRAIC APPROACH, , 1968 .

[33]  John McCarthy A Formal Description of a Subset of Algol , 1964 .

[34]  P. J. Landin The Mechanical Evaluation of Expressions , 1964, Comput. J..

[35]  A. Church The calculi of lambda-conversion , 1941 .