From Broadstone to Zackenberg: Space, time and hierarchies in ecological networks

Summary Ecological networks are typically complex constructions of species and their interactions. During the last decade, the study of networks has moved from static to dynamic analyses, and has attained a deeper insight into their internal structure, heterogeneity, and temporal and spatial resolution. Here, we review, discuss and suggest research lines in the study of the spatio-temporal heterogeneity of networks and their hierarchical nature. We use case study data from two well-characterized model systems (the food web in Broadstone Stream in England and the pollination network at Zackenberg in Greenland), which are complemented with additional information from other studies. We focus upon eight topics: temporal dynamic space-for-time substitutions linkage constraints habitat borders network modularity individual-based networks invasions of networks and super networks that integrate different network types. Few studies have explicitly examined temporal change in networks, and we present examples that span from daily to decadal change: a common pattern that we see is a stable core surrounded by a group of dynamic, peripheral species, which, in pollinator networks enter the web via preferential linkage to the most generalist species. To some extent, temporal and spatial scales are interchangeable (i.e. networks exhibit ‘ergodicity’) and we explore how space-for-time substitutions can be used in the study of networks. Network structure is commonly constrained by phenological uncoupling (a temporal phenomenon), abundance, body size and population structure. Some potential links are never observed, that is they are ‘forbidden’ (fully constrained) or ‘missing’ (a sampling effect), and their absence can be just as ecologically significant as their presence. Spatial habitat borders can add heterogeneity to network structure, but their importance has rarely been studied: we explore how habitat generalization can be related to other resource dimensions. Many networks are hierarchically structured, with modules forming the basic building blocks, which can result in self-similarity. Scaling down from networks of species reveals another, finer-grained level of individual-based organization, the ecological consequences of which have yet to be fully explored. The few studies of individual-based ecological networks that are available suggest the potential for large intraspecific variance and, in the case of food webs, strong size-structuring. However, such data are still scarce and more studies are required to link individual-level and species-level networks. Invasions by alien species can be tracked by following the topological ‘career’ of the invader as it establishes itself within a network, with potentially important implications for conservation biology. Finally, by scaling up to a higher level of organization, it is possible to combine different network types (e.g. food webs and mutualistic networks) to form super networks, and this new approach has yet to be integrated into mainstream ecological research. We conclude by listing a set of research topics that we see as emerging candidates for ecological network studies in the near future.

[1]  Duncan J. Watts,et al.  Collective dynamics of ‘small-world’ networks , 1998, Nature.

[2]  R. Zamora,et al.  Generalization vs. specialization in the pollination system of Hormathophylla spinosa (Cruciferae) , 1999 .

[3]  Leonardo Dominici Cruz,et al.  Nested diets: a novel pattern of individual-level resource use , 2010 .

[4]  Jeff Ollerton,et al.  Plant-pollinator interactions: from specialization to generalization. , 2005 .

[5]  Albert-László Barabási,et al.  Scale-Free Networks: A Decade and Beyond , 2009, Science.

[6]  Jeff Ollerton,et al.  Latitudinal trends in plant‐pollinator interactions: are tropical plants more specialised? , 2002 .

[7]  Neo D. Martinez,et al.  Predicting invasion success in complex ecological networks , 2009, Philosophical Transactions of the Royal Society B: Biological Sciences.

[8]  A. Manning,et al.  Some Aspects of the Foraging Behaviour of Bumble-Bees , 1956 .

[9]  G. Woodward,et al.  Community persistence in Broadstone Stream (U.K.) over three decades , 2002 .

[10]  J. B. Wallace,et al.  Food web quantification using secondary production analysis: predaceous invertebrates of the snag habitat in a subtropical river , 2001 .

[11]  G. Woodward,et al.  Strong density dependence in a predatory insect: large‐scale experiments in a stream , 2004 .

[12]  J. Bascompte,et al.  Structure in plant–animal interaction assemblages , 2006 .

[13]  Jordi Bascompte,et al.  Ecological networks, nestedness and sampling effort , 2007 .

[14]  John H. Lawton,et al.  ARE FOOD WEBS DIVIDED INTO COMPARTMENTS , 1980 .

[15]  G. Polis,et al.  Food webs: integration of patterns and dynamics , 1997 .

[16]  Albert-László Barabási,et al.  Statistical mechanics of complex networks , 2001, ArXiv.

[17]  D. Raffaelli,et al.  Body Size: The Structure and Function of Aquatic Ecosystems: The Structure and Function of Aquatic Ecosystems , 2007 .

[18]  Carsten F. Dormann,et al.  Ecological networks - foodwebs and beyond , 2009 .

[19]  J. Bascompte,et al.  The modularity of pollination networks , 2007, Proceedings of the National Academy of Sciences.

[20]  Jochen Fründ,et al.  What do interaction network metrics tell us about specialization and biological traits? , 2008, Ecology.

[21]  J. Britton,et al.  Dispersal of the invasive topmouth gudgeon, Pseudorasbora parva in the UK: a vector for an emergent infectious disease , 2005 .

[22]  S. Jennings,et al.  Weak cross‐species relationships between body size and trophic level belie powerful size‐based trophic structuring in fish communities , 2001 .

[23]  J. Hudson,et al.  Influence of salmon carcasses on stream productivity: response of biofilm and benthic macroinvertebrates in southeastern Alaska, U.S.A. , 1998 .

[24]  J. Meyer,et al.  EFFECTS OF RESOURCE LIMITATION ON A DETRITAL‐BASED ECOSYSTEM , 1999 .

[25]  S. Carpenter,et al.  Food Webs, Body Size, and Species Abundance in Ecological Community Description , 2005 .

[26]  M. Newman,et al.  The structure of scientific collaboration networks. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[27]  Jordi Bascompte,et al.  Asymmetric Coevolutionary Networks Facilitate Biodiversity Maintenance , 2006, Science.

[28]  D. Barnes,et al.  Quantifying daily migration in the sea urchin Paracentrotus lividus , 2000, Journal of the Marine Biological Association of the United Kingdom.

[29]  D. Simberloff,et al.  Positive Interactions of Nonindigenous Species: Invasional Meltdown? , 1999, Biological Invasions.

[30]  Joel E. Cohen,et al.  Ergodic theorems in demography , 1979 .

[31]  V. Křivan,et al.  Alternative Food, Switching Predators, and the Persistence of Predator‐Prey Systems , 2001, The American Naturalist.

[32]  Marcelo A. Aizen,et al.  Forest Fragmentation, Pollination, and Plant Reproduction in a Chaco Dry Forest, Argentina , 1994 .

[33]  Ricard V. Solé,et al.  Are rainforests self-organized in a critical state? , 1995 .

[34]  S. Strogatz Exploring complex networks , 2001, Nature.

[35]  Diego P. Vázquez,et al.  ASYMMETRIC SPECIALIZATION: A PERVASIVE FEATURE OF PLANT-POLLINATOR INTERACTIONS , 2004 .

[36]  Daniel B. Stouffer,et al.  Nestedness versus modularity in ecological networks: two sides of the same coin? , 2010, The Journal of animal ecology.

[37]  Márcio S Araújo,et al.  Network analysis reveals contrasting effects of intraspecific competition on individual vs. population diets. , 2008, Ecology.

[38]  Paulo R Guimarães,et al.  Cheaters in mutualism networks , 2010, Biology Letters.

[39]  B. J. Borrell Long Tongues and Loose Niches: Evolution of Euglossine Bees and Their Nectar Flowers 1 , 2005 .

[40]  R. May,et al.  Stability and Complexity in Model Ecosystems , 1976, IEEE Transactions on Systems, Man, and Cybernetics.

[41]  K. Winemiller,et al.  Factors Driving Temporal and Spatial Variation in Aquatic Floodplain Food Webs , 1996 .

[42]  B. Seibel,et al.  Climate Change and Invasibility of the Antarctic Benthos , 2007 .

[43]  A. Timmermann,et al.  Pollination networks and functional specialization: a test using Lesser Antillean plant–hummingbird assemblages , 2008 .

[44]  Joseph Tzanopoulos,et al.  Long-term observation of a pollination network: fluctuation in species and interactions, relative invariance of network structure and implications for estimates of specialization. , 2008, Ecology letters.

[45]  S. Hall,et al.  Food webs: theory and reality , 1993 .

[46]  R. Guimerà,et al.  Classes of complex networks defined by role-to-role connectivity profiles. , 2007, Nature physics.

[47]  Jean Clobert,et al.  Aspects of the genesis and maintenance of biological diversity , 1996 .

[48]  D. Reuman,et al.  Trophic links’ length and slope in the Tuesday Lake food web with species’ body mass and numerical abundance , 2004 .

[49]  Jonathan Roughgarden,et al.  Evolution of Niche Width , 1972, The American Naturalist.

[50]  Steven H. Strogatz,et al.  Complex systems: Romanesque networks , 2005, Nature.

[51]  Athanasios S. Kallimanis,et al.  Accuracy of fractal dimension estimates for small samples of ecological distributions , 2002, Landscape Ecology.

[52]  Pedro Jordano,et al.  GEOGRAPHIC PATTERNS IN PLANT–POLLINATOR MUTUALISTIC NETWORKS , 2002 .

[53]  Thomas A. Davidson,et al.  Inferring past zooplanktivorous fish and macrophyte density in a shallow lake: application of a new regression tree model , 2010 .

[54]  J. Olesen,et al.  Invasion of pollination networks on oceanic islands: importance of invader complexes and endemic super generalists , 2002 .

[55]  K. Sneppen,et al.  Specificity and Stability in Topology of Protein Networks , 2002, Science.

[56]  Jordi Bascompte,et al.  Compartments in a marine food web associated with phylogeny, body mass, and habitat structure. , 2009, Ecology letters.

[57]  G Sugihara,et al.  Applications of fractals in ecology. , 1990, Trends in ecology & evolution.

[58]  J. Meyer,et al.  Multiple Trophic Levels of a Forest Stream Linked to Terrestrial Litter Inputs , 1997 .

[59]  F. Bazzaz,et al.  Difference in Pollination Niche Relationships in Early and Late Successional Plant Communities , 1979 .

[60]  Jordi Bascompte,et al.  Disentangling the Web of Life , 2009, Science.

[61]  N. Waltho,et al.  Organization of instabilities in multispecies systems, a test of hierarchy theory. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[62]  Peter C de Ruiter and Volkmar Wolters DYNAMIC FOOD WEBS: MULTISPECIES ASSEMBLAGES, ECOSYSTEM DEVELOPMENT, AND ENVIRONMENTAL CHANGE , 2005 .

[63]  Ricard V Solé,et al.  Reciprocal specialization in ecological networks. , 2009, Ecology letters.

[64]  J. Olesen,et al.  Pollen removal and deposition by specialist and generalist bumblebees in Aconitum septentrionale , 1996 .

[65]  M. Pascual,et al.  Ecological networks : Linking structure to dynamics in food webs , 2006 .

[66]  Albert-László Barabási,et al.  Error and attack tolerance of complex networks , 2000, Nature.

[67]  Juan M Morales,et al.  Invasive Mutualists Erode Native Pollination Webs , 2008, PLoS biology.

[68]  Jordi Bascompte,et al.  The architecture of mutualistic networks minimizes competition and increases biodiversity , 2009, Nature.

[69]  J. Bascompte,et al.  Global change and species interactions in terrestrial ecosystems. , 2008, Ecology letters.

[70]  Jean-Pierre Gabriel,et al.  Phylogenetic constraints and adaptation explain food-web structure , 2004, Nature.

[71]  Stephen Alfred Forbes,et al.  The Lake as a Microcosm , 1925 .

[72]  Marti J. Anderson,et al.  Species abundance distributions: moving beyond single prediction theories to integration within an ecological framework. , 2007, Ecology letters.

[73]  S. Shen-Orr,et al.  Network motifs: simple building blocks of complex networks. , 2002, Science.

[74]  C. Darwin On the Origin of Species by Means of Natural Selection: Or, The Preservation of Favoured Races in the Struggle for Life , 2019 .

[75]  L. Herborg,et al.  Spread of the Chinese mitten crab (Eriocheir sinensis H. Milne Edwards) in Continental Europe: analysis of a historical data set , 2003, Hydrobiologia.

[76]  Neo D. Martinez,et al.  Food-web structure and network theory: The role of connectance and size , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[77]  J. Olesen From naïveté to experience: bumblebee queens ( Bombus terrestris ) foraging on Corydalis cava (Fumariaceae) , 1997 .

[78]  David Lusseau,et al.  Incorporating uncertainty into the study of animal social networks , 2008, Animal Behaviour.

[79]  R. Vance,et al.  Diel foraging patterns of the sea urchin Centrostephanus coronatus as a predator avoidance strategy , 1979 .

[80]  Scott L. Collins,et al.  Importance of Spatial and Temporal Dynamics in Species Regional Abundance and Distribution , 1991 .

[81]  C. Darwin The Origin of Species by Means of Natural Selection, Or, The Preservation of Favoured Races in the Struggle for Life , 2019 .

[82]  Stefano Allesina,et al.  Parasites in food webs: the ultimate missing links , 2008, Ecology letters.

[83]  Carolina L. Morales,et al.  Invasive mutualisms and the structure of plant–pollinator interactions in the temperate forests of north‐west Patagonia, Argentina , 2006 .

[84]  C. Mason,et al.  The input of terrestrial invertebrates from tree canopies to a stream , 1982 .

[85]  G. Polis,et al.  Complex Trophic Interactions in Deserts: An Empirical Critique of Food-Web Theory , 1991, The American Naturalist.

[86]  N. Bartoloni,et al.  A year‐long plant‐pollinator network , 2006 .

[87]  M Rejmánek,et al.  Plant invasions — the role of mutualisms , 2000, Biological reviews of the Cambridge Philosophical Society.

[88]  P. Åberg Size‐Based Demography of the Seaweed Ascophyllum Nodosum in Stochastic Environments , 1992 .

[89]  Serhiy Morozov,et al.  A Distributed, Architecture-Centric Approach to Computing Accurate Recommendations from Very Large and Sparse Datasets , 2011 .

[90]  J. Nabe‐Nielsen Diversity and distribution of lianas in a neotropical rain forest, Yasuní National Park, Ecuador , 2001, Journal of Tropical Ecology.

[91]  Jane Memmott,et al.  Integration of alien plants into a native flower–pollinator visitation web , 2002, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[92]  Diego P. Vázquez,et al.  Degree distribution in plant–animal mutualistic networks: forbidden links or random interactions? , 2005 .

[93]  Corinne Vacher,et al.  Architecture of an Antagonistic Tree/Fungus Network: The Asymmetric Influence of Past Evolutionary History , 2008, PloS one.

[94]  George Sugihara,et al.  Complex systems: Ecology for bankers , 2008, Nature.

[95]  Shlomo Havlin,et al.  Origins of fractality in the growth of complex networks , 2005, cond-mat/0507216.

[96]  F. Médail,et al.  Invasional meltdown potential: Facilitation between introduced plants and mammals on French Mediterranean islands , 2005 .

[97]  T. Abe Threatened pollination systems in native flora of the Ogasawara (Bonin) Islands. , 2006, Annals of botany.

[98]  Eoin J. O’Gorman,et al.  Manipulating Interaction Strengths and the Consequences for Trivariate Patterns in a Marine Food Web , 2010 .

[99]  S. Redner How popular is your paper? An empirical study of the citation distribution , 1998, cond-mat/9804163.

[100]  A. Witze Climate change: Losing Greenland , 2008, Nature.

[101]  Owen L. Petchey,et al.  Ecological Networks in a Changing Climate , 2010 .

[102]  Y. Kawaguchi,et al.  Contribution of terrestrial invertebrates to the annual resource budget for salmonids in forest and grassland reaches of a headwater stream , 2001 .

[103]  W. Kunin,et al.  Extrapolating species abundance across spatial scales , 1998, Science.

[104]  G. Woodward,et al.  Long‐term variation in the littoral food web of an acidified mountain lake , 2010 .

[105]  Jordi Bascompte,et al.  Missing and forbidden links in mutualistic networks , 2011, Proceedings of the Royal Society B: Biological Sciences.

[106]  A. Hastings,et al.  Weak trophic interactions and the balance of nature , 1998, Nature.

[107]  Jonathan M. Chase,et al.  Trophic cascades across ecosystems , 2005, Nature.

[108]  E. Bernays,et al.  Seasonal variation in secondary plant compounds in relation to the palatability of Pteridium aquilinum , 1977 .

[109]  Vladimir Batagelj,et al.  Exploratory Social Network Analysis with Pajek , 2005 .

[110]  Jordi Bascompte,et al.  Diversity in a complex ecological network with two interaction types , 2009 .

[111]  Ola Jennersten Pollination in Dianthus deltoides (Caryophyllaceae): effects of habitat fragmentation on visitation and seed set , 1988 .

[112]  Carlos J. Melián,et al.  The temporal dynamics of resource use by frugivorous birds: a network approach. , 2009, Ecology.

[113]  Pedro Jordano,et al.  Patterns of Mutualistic Interactions in Pollination and Seed Dispersal: Connectance, Dependence Asymmetries, and Coevolution , 1987, The American Naturalist.

[114]  Carsten Thies,et al.  Effects of landscape context on herbivory and parasitism at different spatial scales , 2003 .

[115]  J. Montoya,et al.  Small world patterns in food webs. , 2002, Journal of theoretical biology.

[116]  D. Raffaelli,et al.  Compartments and predation in an estuarine food web , 1992 .

[117]  R. Solé,et al.  Ecological networks and their fragility , 2006, Nature.

[118]  R. Guimerà,et al.  Functional cartography of complex metabolic networks , 2005, Nature.

[119]  P. Yodzis The Indeterminacy of Ecological Interactions as Perceived Through Perturbation Experiments , 1988 .

[120]  H. B. N. Hynes,et al.  The stream and its valley , 1975 .

[121]  John G. Field,et al.  Using size-based indicators to evaluate the ecosystem effects of fishing , 2005 .

[122]  Jukka-Pekka Onnela,et al.  Community Structure in Time-Dependent, Multiscale, and Multiplex Networks , 2009, Science.

[123]  Reka Albert,et al.  Mean-field theory for scale-free random networks , 1999 .

[124]  V. T. Parker,et al.  Ecological scale : theory and applications , 1999 .

[125]  K. Winemiller Spatial and Temporal Variation in Tropical Fish Trophic Networks , 1990 .

[126]  Owen L. Petchey,et al.  Foraging biology predicts food web complexity , 2006, Proceedings of the National Academy of Sciences.

[127]  Torben R. Christensen,et al.  High Arctic Ecosystem Dynamics in a Changing Climate , 2008 .

[128]  Z. Neda,et al.  Measuring preferential attachment in evolving networks , 2001, cond-mat/0104131.

[129]  J Memmott,et al.  The structure of a plant-pollinator food web. , 1999, Ecology letters.

[130]  Albert,et al.  Emergence of scaling in random networks , 1999, Science.

[131]  Jordi Bascompte,et al.  The ecological consequences of complex topology and nested structure in pollination webs. , 2006 .

[132]  Todd M. Scanlon,et al.  Positive feedbacks promote power-law clustering of Kalahari vegetation , 2007, Nature.

[133]  Jordi Bascompte,et al.  Plant-Animal Mutualistic Networks: The Architecture of Biodiversity , 2007 .

[134]  D. Mason,et al.  Compartments revealed in food-web structure , 2003, Nature.

[135]  Colin R. Townsend,et al.  The Effect of Seasonal Variation on the Community Structure and Food-Web Attributes of Two Streams: Implications for Food-Web Science , 1999 .

[136]  S. Levin The problem of scale in ecology , 1993 .

[137]  L. Carvalheiro,et al.  Pollinator networks, alien species and the conservation of rare plants: Trinia glauca as a case study , 2008 .

[138]  J. Olesen,et al.  Impact of Alien Plant Invaders on Pollination Networks in Two Archipelagos , 2009, PloS one.

[139]  T. Mabry,et al.  Ecological considerations of amino acids and flavonoids in Sarracenia species , 1977 .

[140]  Anders Nielsen,et al.  Effects of an exotic plant and habitat disturbance on pollinator visitation and reproduction in a boreal forest herb. , 2006, American journal of botany.

[141]  Harry Eugene Stanley,et al.  Catastrophic cascade of failures in interdependent networks , 2009, Nature.

[142]  Ricard V. Solé,et al.  Competition and introduction regime shape exotic bird communities in Hawaii , 2005, Biological Invasions.

[143]  M. Emmerson,et al.  Temporal Variability in Predator-Prey Relationships of a Forest Floor Food Web , 2010 .

[144]  Carlos Melián,et al.  FOOD WEB COHESION , 2004 .

[145]  Jens M. Olesen,et al.  Structure of a plant–flower‐visitor network in the high‐altitude sub‐alpine desert of Tenerife, Canary Islands , 2003 .

[146]  Werner Ulrich,et al.  A consumer's guide to nestedness analysis , 2009 .

[147]  Amedeo Caflisch,et al.  The robustness of pollination networks to the loss of species and interactions: a quantitative approach incorporating pollinator behaviour. , 2010, Ecology letters.

[148]  T. Fritts,et al.  THE ROLE OF INTRODUCED SPECIES IN THE DEGRADATION OF ISLAND ECOSYSTEMS: A Case History of Guam1 , 1998 .

[149]  Jordi Bascompte,et al.  The smallest of all worlds: pollination networks. , 2006, Journal of theoretical biology.

[150]  Jordi Bascompte,et al.  Spatial mating networks in insect-pollinated plants. , 2008, Ecology letters.

[151]  Neo D. Martinez,et al.  Simple rules yield complex food webs , 2000, Nature.

[152]  Y. Dupont,et al.  Influence of Geographical Distribution and Floral Traits on Species Richness of Bees (Hymenoptera: Apoidea) Visiting Echium Species (Boraginaceae) of the Canary Islands , 2004, International Journal of Plant Sciences.

[153]  M. Murakami,et al.  Effect of emergent aquatic insects on bat foraging in a riparian forest. , 2006, The Journal of animal ecology.

[154]  M. Ritter,et al.  Nonsynchronism and the Obligation to Its Dialectics , 1977 .

[155]  J. Thompson The Geographic Mosaic of Coevolution , 2005 .

[156]  C. Townsend,et al.  Community‐Wide Consequences of Trout Introduction in New Zealand Streams , 1994 .

[157]  Albert-László Barabási,et al.  Hierarchical organization in complex networks. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[158]  Tinker,et al.  Killer whale predation on sea otters linking oceanic and nearshore ecosystems , 1998, Science.

[159]  Carlos J. Melián,et al.  The nested assembly of plant–animal mutualistic networks , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[160]  Toke T. Høye,et al.  Rapid advancement of spring in the High Arctic , 2007, Current Biology.

[161]  Ricard V. Solé,et al.  Complexity and fragility in ecological networks , 2000, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[162]  H. Godfray,et al.  Structure of a diverse tropical forest insect–parasitoid community , 2002 .

[163]  Neil Rooney,et al.  A landscape theory for food web architecture. , 2008, Ecology letters.

[164]  J. Krause,et al.  Social network theory in the behavioural sciences: potential applications , 2007, Behavioral Ecology and Sociobiology.

[165]  A. Magurran,et al.  Explaining the excess of rare species in natural species abundance distributions , 2003, Nature.

[166]  Paulo Inácio Prado,et al.  Compartments in insect-plant associations and their consequences for community structure , 2004 .

[167]  S. Apollonio Hierarchical Perspectives on Marine Complexities , 2002 .

[168]  G. Woodward,et al.  Body Size: Body size and predatory interactions in freshwaters: scaling from individuals to communities , 2007 .

[169]  David B. Jepsen,et al.  Effects of seasonality and fish movement on tropical river food webs , 1998 .

[170]  W. Gurney,et al.  Long-term demographic balance in the Broadstone stream insect community , 2000 .

[171]  P. S. Lake,et al.  Invasional 'meltdown' on an oceanic island , 2003 .

[172]  J. Bascompte,et al.  Ecological networks : beyond food webs Ecological networks – beyond food webs , 2008 .

[173]  Robert E. Ulanowicz,et al.  Role of network analysis in comparative ecosystem ecology of estuaries , 2005 .

[174]  P. Yodzis,et al.  Local trophodynamics and the interaction of marine mammals and fisheries in the Benguela ecosystem , 1998 .

[175]  Joel E. Cohen,et al.  Community Food Webs: Data and Theory , 1990 .

[176]  S. Allesina,et al.  Ecological subsystems via graph theory: the role of strongly connected components , 2005 .

[177]  Owen L Petchey,et al.  Size, foraging, and food web structure , 2008, Proceedings of the National Academy of Sciences.

[178]  Jane Memmott,et al.  The impact of an alien plant on a native plant-pollinator network: an experimental approach. , 2007, Ecology letters.

[179]  Jens M. Olesen,et al.  Strong, Long-Term Temporal Dynamics of an Ecological Network , 2011, PloS one.

[180]  M. Hill,et al.  Untangling Ecological Complexity , 2000 .

[181]  L. Nilsson,et al.  The evolution of flowers with deep corolla tubes , 1988, Nature.

[182]  Horacio Ceva,et al.  Why nestedness in mutualistic networks? , 2006, Journal of theoretical biology.

[183]  Neo D. Martinez,et al.  Two degrees of separation in complex food webs , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[184]  Owen L. Petchey,et al.  Across ecosystem comparisons of size structure: methods, approaches and prospects , 2011 .

[185]  Craig A. Layman,et al.  FOOD WEB SCIENCE: MOVING ON THE PATH FROM ABSTRACTION TO PREDICTION , 2005 .

[186]  Guy Woodward,et al.  Chapter 5 - Food Web Structure and Stability in 20 Streams Across a Wide pH Gradient , 2010 .

[187]  A. Barabasi,et al.  Virtual Round Table on ten leading questions for network research , 2004 .

[188]  G. Garman,et al.  The energetic importance of terrestrial arthropod inputs to three warm‐water streams , 1996 .

[189]  E. Raineri,et al.  Evolvability and hierarchy in rewired bacterial gene networks , 2008, Nature.

[190]  M. Dobson,et al.  A test of resource limitation among shredding detritivores in low order streams in southern England , 1992 .

[191]  Eoin J. O’Gorman,et al.  Perturbations to trophic interactions and the stability of complex food webs , 2009, Proceedings of the National Academy of Sciences.

[192]  A. Traveset,et al.  Pollination of Euphorbia dendroides by lizards and insects: Spatio-temporal variation in patterns of flower visitation , 1997, Oecologia.

[193]  S. Havlin,et al.  Self-similarity of complex networks , 2005, Nature.

[194]  Philip H. Warren,et al.  Spatial and temporal variation in the structure of a freshwater food web , 1989 .

[195]  M. Lucas,et al.  Movement and dispersal of the invasive signal crayfish Pacifastacus leniusculus in upland rivers , 2004 .

[196]  P. Feinsinger,et al.  DISTURBANCE, POLLINATOR PREDICTABILITY, AND POLLINATION SUCCESS AMONG COSTA RICAN CLOUD FOREST PLANTS' , 1987 .

[197]  Tom Gonser,et al.  The boundaries of river systems: the metazoan perspective , 1998 .

[198]  A. Barabasi,et al.  Quantifying social group evolution , 2007, Nature.

[199]  P. A. Morrow,et al.  Specialization: species property or local phenomenon? , 1981, Science.

[200]  C. T. Robbins,et al.  Role of brown bears (Ursus arctos) in the flow of marine nitrogen into a terrestrial ecosystem , 1999, Oecologia.

[201]  N. Bartoloni,et al.  Plant-pollinator Relationships at Two Altitudes in the Andes of Mendoza, Argentina , 2002 .

[202]  A. Hildrew Chapter 4 Sustained Research on Stream Communities: A Model System and The Comparative Approach , 2009 .

[203]  J. Olesen,et al.  Ecological modules and roles of species in heathland plant-insect flower visitor networks. , 2009, The Journal of animal ecology.

[204]  D. Simberloff,et al.  Ecological Specialization and Susceptibility to Disturbance: Conjectures and Refutations , 2002, The American Naturalist.

[205]  C. Herrera Variation in mutualisms : the spatio temporal mosaic of a pollinator assemblage , 1988 .

[206]  J. Wootton,et al.  ESTIMATES AND TESTS OF PER CAPITA INTERACTION STRENGTH: DIET, ABUNDANCE, AND IMPACT OF INTERTIDALLY FORAGING BIRDS , 1997 .

[207]  R. Hall,et al.  Organic matter flow in stream food Webs with reduced detrital resource base , 2000 .

[208]  J. Bascompte,et al.  Invariant properties in coevolutionary networks of plant-animal interactions , 2002 .

[209]  D. Mouillot,et al.  The Fractal Model: a new model to describe the species accumulation process and relative abundance distribution (RAD) , 2000 .

[210]  Jens M. Olesen,et al.  The Dense and Highly Connected World of Greenland's Plants and Their Pollinators , 2005 .

[211]  Daniel E. Schindler,et al.  CLIMATE CHANGE UNCOUPLES TROPHIC INTERACTIONS IN AN AQUATIC ECOSYSTEM , 2004 .

[212]  George Sugihara,et al.  Complex systems: Cooperative network dynamics , 2009, Nature.

[213]  G. Polis,et al.  Allochthonous Input Across Habitats, Subsidized Consumers, and Apparent Trophic Cascades: Examples from the Ocean-Land Interface , 1996 .

[214]  D. Goulson,et al.  Introduced weeds pollinated by introduced bees: Cause or effect? , 2003 .

[215]  Ørjan Totland,et al.  How does climate warming affect plant-pollinator interactions? , 2009, Ecology letters.

[216]  Guy Woodward,et al.  Invasion of a stream food web by a new top predator , 2001 .

[217]  G. Closs,et al.  Spatial and Temporal Variation in the Structure of an Intermittent-Stream Food Web , 1994 .

[218]  Daniel I. Bolnick,et al.  MEASURING INDIVIDUAL-LEVEL RESOURCE SPECIALIZATION , 2002 .

[219]  T. Elmqvist,et al.  Pollinator Extinction in the Pacific Islands , 2000 .

[220]  Carlos J. Melián,et al.  Complex networks: two ways to be robust? , 2002 .

[221]  D. Cushing Marine ecology and fisheries , 1975, Environmental Biology of Fishes.

[222]  Carlos J. Melián,et al.  Eco-evolutionary Dynamics of Individual-Based Food Webs , 2011 .

[223]  ROBERT M. MAY,et al.  Will a Large Complex System be Stable? , 1972, Nature.

[224]  G. Woodward,et al.  Climate change and freshwater ecosystems: impacts across multiple levels of organization , 2010, Philosophical Transactions of the Royal Society B: Biological Sciences.

[225]  Guy Woodward,et al.  Back to the future: using palaeolimnology to infer long-term changes in shallow lake food webs , 2010 .

[226]  C. T. Butts,et al.  Revisiting the Foundations of Network Analysis , 2009, Science.

[227]  W. Gurney,et al.  Emergence and lateral dispersal of adult Plecoptera and Trichoptera from Broadstone Stream, U.K. , 1999 .

[228]  V. Eckhart The effects of floral display on pollinator visitation vary among populations ofPhacelia linearis (Hydrophyllaceae) , 1991, Evolutionary Ecology.

[229]  Jane Memmott,et al.  Global warming and the disruption of plant-pollinator interactions. , 2007, Ecology letters.

[230]  D. Dudley Williams,et al.  The Importance of Temporal Resolution in Food Web Analysis: Evidence from a Detritus‐Based Stream , 1996 .

[231]  S. Mcgregor,et al.  Cotton-Flower Visitation and Pollen Distribution by Honey Bees , 1959, Science.

[232]  Jeff Ollerton,et al.  Year‐to‐year variation in the topology of a plant–pollinator interaction network , 2008 .

[233]  P. Pin,et al.  Assessing the relevance of node features for network structure , 2008, Proceedings of the National Academy of Sciences.

[234]  H E Stanley,et al.  Classes of small-world networks. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[235]  D. Janzen Euglossine Bees as Long-Distance Pollinators of Tropical Plants , 1971, Science.

[236]  Guy Woodward,et al.  Biodiversity, ecosystem functioning and food webs in fresh waters: assembling the jigsaw puzzle , 2009 .

[237]  Guy Woodward,et al.  Body size in ecological networks. , 2005, Trends in ecology & evolution.

[238]  Jordi Bascompte,et al.  Spatial structure and dynamics in a marine food web , 2005 .

[239]  Kevin S. McCann,et al.  The Role of Space, Time, and Variability in Food Web Dynamics , 2006 .

[240]  Guy Woodward,et al.  Quantification and Resolution of a Complex, Size-Structured Food Web , 2005 .

[241]  Joel E. Cohen,et al.  Temporal Variation in Food Web Structure: 16 Empirical Cases , 1991 .

[242]  J. E. Cohen,et al.  Food webs and niche space. , 1979, Monographs in population biology.

[243]  Stefano Allesina,et al.  Food web models: a plea for groups. , 2009, Ecology letters.

[244]  Karen C. Abbott,et al.  Sensitivity of plant-pollinator-herbivore communities to changes in phenology. , 2010 .

[245]  Jordi Bascompte,et al.  Temporal dynamics in a pollination network. , 2008, Ecology.

[246]  Steiner,et al.  Generalization versus specialization in plant pollination systems. , 2000, Trends in ecology & evolution.

[247]  T. Hiura,et al.  Commercialized European bumblebee can cause pollination disturbance: An experiment on seven native plant species in Japan , 2007 .

[248]  K. McCann,et al.  Food Web Stability: The Influence of Trophic Flows across Habitats , 1998, The American Naturalist.

[249]  Werner Ulrich,et al.  Consumer-resource body-size relationships in natural food webs. , 2006, Ecology.

[250]  T. Vicsek,et al.  Uncovering the overlapping community structure of complex networks in nature and society , 2005, Nature.

[251]  D. Inouye,et al.  Environmental influences on the phenology and abundance of flowering by Androsace septentrionalis (Primulaceae). , 2003, American journal of botany.

[252]  Anna Traveset,et al.  Biological invasions as disruptors of plant reproductive mutualisms. , 2006, Trends in ecology & evolution.

[253]  Jens M. Olesen,et al.  The structure of a high latitude plant‐flower visitor system: the dominance of flies , 1999 .

[254]  Jens M. Olesen,et al.  Scaling down from species to individuals: a flower–visitation network between individual honeybees and thistle plants , 2011 .

[255]  Jordi Bascompte,et al.  The roosting spatial network of a bird-predator bat. , 2009, Ecology.

[256]  G. Woodward,et al.  Body‐size determinants of niche overlap and intraguild predation within a complex food web , 2002 .

[257]  Ricard V Solé,et al.  Press perturbations and indirect effects in real food webs. , 2009, Ecology.

[258]  O. Sporns,et al.  Hierarchical features of large-scale cortical connectivity , 2005, q-bio/0508007.

[259]  S. Levin The problem of pattern and scale in ecology , 1992 .

[260]  A. Vespignani Predicting the Behavior of Techno-Social Systems , 2009, Science.

[261]  J. Olesen,et al.  The fragility of extreme specialization: Passiflora mixta and its pollinating hummingbird Ensifera ensifera , 2001, Journal of Tropical Ecology.

[262]  Jane Memmott,et al.  Food webs: a ladder for picking strawberries or a practical tool for practical problems? , 2009, Philosophical Transactions of the Royal Society B: Biological Sciences.

[263]  E. Southall,et al.  Spatial and temporal analysis of vegetation mosaics for conservation: poor fen communities in a Cornish valley mire , 2003 .

[264]  Roger Guimerà,et al.  Extracting the hierarchical organization of complex systems , 2007, Proceedings of the National Academy of Sciences.

[265]  Paulo Guimarães,et al.  Improving the analyses of nestedness for large sets of matrices , 2006, Environ. Model. Softw..

[266]  Daniel E. Schindler,et al.  Climatic effects on the phenology of lake processes , 2004 .

[267]  D. Snow,et al.  Feeding niches of hummingbirds in a Trinidad valley , 1972 .

[268]  Robert E. Ulanowicz,et al.  Aquatic food webs : an ecosystem approach , 2005 .

[269]  Francesca Cagnacci,et al.  Comparison of social networks derived from ecological data: implications for inferring infectious disease dynamics. , 2009, The Journal of animal ecology.

[270]  J. Olesen,et al.  A snake in paradise: Disturbance of plant reproduction following extirpation of bird flower-visitors on Guam , 2008 .

[271]  S. Pickett,et al.  Organization of an Assemblage of Early Successional Species on a Soil Moisture Gradient , 1978 .

[272]  Frederic E. Clements,et al.  Experimental pollination; an outline of the ecology of flowers and insects , 2009 .

[273]  Neo D. Martinez,et al.  Network structure and biodiversity loss in food webs: robustness increases with connectance , 2002, Ecology Letters.

[274]  Guy Woodward,et al.  Food web structure in riverine landscapes , 2002 .

[275]  Shigeru Nakano,et al.  TERRESTRIAL–AQUATIC LINKAGES: RIPARIAN ARTHROPOD INPUTS ALTER TROPHIC CASCADES IN A STREAM FOOD WEB , 1999 .

[276]  Neal M. Williams,et al.  Species abundance and asymmetric interaction strength in ecological networks , 2007 .

[277]  W. Armbruster EVOLUTION OF PLANT POLLINATION SYSTEMS: HYPOTHESES AND TESTS WITH THE NEOTROPICAL VINE DALECHAMPIA , 1993, Evolution; international journal of organic evolution.

[278]  S. Carpenter,et al.  Early-warning signals for critical transitions , 2009, Nature.

[279]  M. Aizen,et al.  Does Invasion of Exotic Plants Promote Invasion of Exotic Flower Visitors? A Case Study from the Temperate Forests of the Southern Andes , 2002, Biological Invasions.